

Field Activities Technical Memorandum Jones Road Ground Water Plume Superfund Site Remedial Design Harris County, Texas

Remedial Action Contract 2 Full Service Contract: EP-W-06-004 Task Order: 0070-RDRD-06NK

Prepared for

U.S. Environmental Protection Agency Region 6 1201 Elm Street, Suite 500 Dallas, Texas 75270-2102

Prepared by

EA Engineering, Science, and Technology, Inc., PBC 405 State Highway 121 (Bypass)
Building C, Suite 100
Lewisville, Texas 75067
(972) 315-3922

April 2020 Revision: 00 EA Project No. 14342.70

Field Activities Technical Memorandum Jones Road Ground Water Plume Superfund Site Remedial Design Harris County, Texas

Remedial Action Contract 2 Full Service Contract: EP-W-06-004 Task Order: 0070-RDRD-06NK

Prepared for

U.S. Environmental Protection Agency Region 6 1201 Elm Street, Suite 500 Dallas, Texas 75270-2102

Prepared by

EA Engineering, Science, and Technology, Inc., PBC 405 State Highway 121 (Bypass)
Building C, Suite 100
Lewisville, Texas 75067
(972) 315-3922

CONTENTS

			<u>Page</u>
LIST	OF FIG	GURES	ii
LIST	OF TA	ABLES	ii
LIST	OF AT	TTACHMENTS	ii
LIST	OF AC	CRONYMS AND ABBREVIATIONS	iii
1.	INTF	RODUCTION	1
	1.1	PURPOSE	1
2.	BAC	CKGROUND	1
	2.1 2.2	SITE BACKGROUNDSUMMARY OF PREVIOUS INVESTIGATIONS	
3.		MEDIAL DESIGN FIELD PROGRAM	
	3.1 3.2 3.3 3.4 3.5 3.6 3.7	GROUNDWATER SAMPLING EVENT – SEPTEMBER 2017	4 4 4 5
4.	REF	ERENCES	6

LIST OF FIGURES

<u>Number</u>		<u>Title</u>
1	Site Layout	
2	Well Location Map	
3	Air Sample Location Map	

LIST OF TABLES

<u>Number</u>	<u>Title</u>
1	Monitoring Well Gauging Information
2	Groundwater Sampling Information
3	Vapor Intrusion Sampling Information
4	CMT Wells Sampling Information

LIST OF ATTACHMENTS

Number		<u>Title</u>
1	Field Forms	
2	Field Notes	
3	Photo Log	
4	Vapor Intrusion Data	

LIST OF ACRONYMS AND ABBREVIATIONS

CLP Contract Laboratory Program
CMT Continuous Multichannel Tubing

DCE Dichloroethene

EA Engineering, Science, and Technology, Inc., PBC

EPA U.S. Environmental Protection Agency

Eurofins Eurofins Lancaster Laboratories Environmental

MNA Monitored Natural Attenuation

PCE Tetrachloroethene

QC Quality Control

RA Remedial Action ROD Record of Decision RD Remedial Design

SIM Selective Ion Monitoring

site Jones Road Ground Water Plume Superfund Site

VC Vinyl Chloride VI Vapor Intrusion

VOC Volatile Organic Compounds

WBZ Water-bearing zone

Revision: 00

Page iv April 2020

EA Engineering, Science, and Technology, Inc., PBC

This page intentionally left blank

April 2020

1. INTRODUCTION

EA Engineering, Science, and Technology, Inc., PBC (EA) has been authorized by the U.S. Environmental Protection Agency (EPA), under Remedial Action Contract No. EP W 06 004, Task Order 0070-RDRD-06NK, to conduct a Remedial Design (RD) at the Jones Road Ground Water Plume Superfund Site (site) located in Harris County, Texas. EA has prepared this Field Activities Technical Memorandum in accordance with: (1) Field Change Form No. 2 dated February 2018 and (2) the EPA-approved Work Plan (EA 2014).

1.1 PURPOSE

The purpose of this Technical Memorandum is to summarize the field activities included in Field Change Form No. 2 of the approved Work Plan. Results will be summarized in subsequent remedial action reports prepared under another task order.

2. BACKGROUND

The site is located in the northwest portion of Harris County, Texas (Figure 1), within the extraterritorial jurisdiction of Houston, Texas. The site background information is summarized in the following sections.

2.1 SITE BACKGROUND

The site contamination originated from the former Bell Dry Cleaners located at 11600 Jones Road, approximately 0.5 miles north of the intersection of Jones Road and Farm-to-Market Road 1960 (Figure 1). The site was proposed to the National Priorities List on 30 April 2003 (68 Federal Register 23094) and finalized on 29 September 2003 (68 Federal Register 55875).

The Cypress Shopping Center was constructed in 1984, and the former Bell facility began dry cleaning operations using perchloroethene (PCE; also known as tetrachloroethene) sometime in 1988. The former Bell facility continued operating through May 2002 when the dry cleaning operations were shut down. Volatile organic compounds (VOCs) are present at the site at concentrations that exceed Maximum Contaminant Levels (EPA 2020), including PCE and related daughter products trichloroethene, cis- and trans-1,2-dichloroethene, and vinyl chloride.

The area around the site is characterized by residential, commercial, and light industrial development. Residential development has been active since the 1960s, effectively eliminating wildlife habitat from the area. Jones Road is the principal north-south corridor through the area, and Farm-to-Market Road 1960 (approximately 0.5 miles to the south) provides a southwestnortheast corridor. Commercial development is dominant along Jones Road with residential and limited commercial development along the side streets. Cypress Creek is located approximately 1 mile to the northwest of the subject area, and White Oak Bayou is located approximately 3,500 feet to the south.

2.2 SUMMARY OF PREVIOUS INVESTIGATIONS

The site has undergone numerous investigations beginning in 1994 and continuing through 2015. From August 2003 to May 2008, a Texas Commission on Environmental Quality contractor performed a Remedial Investigation at the site, which characterized the nature and extent of constituents present in environmental media at the site. Soil, groundwater, and vapor intrusion samples were collected, and a bench scale treatability study was completed to evaluate the application of *in situ* chemical oxidation and bioremediation treatment technologies. Routine quarterly groundwater sampling was also performed.

Homes in the area have private water supply wells, and some homes share a single well with others. From January through November 2008, EPA conducted a time-critical removal action that included the installation of a water line and connections to homes and businesses associated with the site. Approximately 51 percent of the well owners in the immediate vicinity of the former Bell facility agreed to discontinue use of their water wells and use water supplied by the water line. The water line is serviced by the White Oak Bend Municipal Utility District.

The Record of Decision (ROD) for the site (EPA 2010) was signed on 23 September 2010, and it set forth the selected remedy for the site. One planned operable unit is planned for the site, and the selected remedial action (RA) is intended to address all areas of concern at the site. The selected remedy as described in the ROD is Alternative 4 (*In Situ* Enhancements to Pump and Treat). The *in situ* enhancements involve treating the soil and groundwater without removing them.

The current design phase has focused on an extensive hydraulic containment/pump and treat RA for contaminated groundwater for the Lower Chicot water-bearing zone (WBZ) and the Shallow WBZ. A field pilot project has also been conducted to confirm an *in situ* application for the Shallow WBZ, as well as the most effective amendments to degrade the contaminants.

In April 2013, the Jones Road project underwent further evaluation of the RD to optimize the remedial response to address soil and groundwater contamination to "achieve maximum protectiveness while improving cost and energy efficiency and minimizing time" to reach cleanup goals. The recommendations of the optimization team were formalized in the "Optimization Review, Jones Road Superfund Site, September 2014, EPA (542-R-14-006)" which redirected the sequencing of the project to prioritize source reduction of the Shallow Soil (soil gas), Shallow WBZ (groundwater), and the Unsaturated Chicot (soil gas). This approach targets the majority of the contaminant mass with the greatest potential for continued contribution of contaminants to the Lower Chicot Aquifer. Most importantly, the optimization review team recommended that the current design for hydraulic containments of the Lower Chicot groundwater plume be delayed indefinitely until the three sources areas, overlying the Lower Chicot Aquifer, are mitigated. Source reduction is expected to reduce contaminants and the underlying plume with time and will be verified with monitoring.

Several sampling events have been performed at the site in the last five years, including soil, groundwater, passive soil gas, and vapor intrusion. And additionally, in February 2018, as

recommended in the Jones Road Superfund Optimization Review report. The following field activities were completed to follow the Optimization Review Report findings and the subsequent selected remedies of soil vapor extraction and *in situ* bioremediation:

- Two vapor intrusion (VI) sampling events 1 in spring/summer and 1 in fall/winter to evaluate seasonal variation
- One ground water sampling event that includes sampling of the 5 continuous multichannel tubing (CMT) wells and gauging of all site monitor wells
- Two ground water sampling events that includes collection of ground water samples from the 15 shallow site monitor wells.

3. REMEDIAL DESIGN FIELD PROGRAM

Section 3 summarizes the air and groundwater sampling activities that occurred during the RD field program. Summaries of the laboratory data and copies of laboratory reports were provided in the RA Report under Task Order 129. Copies of the field sampling forms, field notes, and photo log are included in Attachments A, B, and C, respectively.

EA performed field activities in accordance with the following plans:

- RD Work Plan (EA 2014)
- Health and Safety Plan (EA 2011a)
- Site Management Plan (EA 2011b)
- Sampling and Analysis Plan (EA 2011c)
- Sampling and Analysis Plan Addendum 1 (EA 2011d).

3.1 GROUNDWATER SAMPLING EVENT-SEPTEMBER 2017

A groundwater event was conducted from 11 through 13 September 2017. EA collected a total of 16 groundwater samples (including quality control [QC] samples), using the low-flow method and a bailer when necessary. The samples were analyzed for VOCs and metals and shipped to the EPA Region 6 Laboratory and the Contract Laboratory Program (CLP) Laboratory, respectively. Additionally, Monitored Natural Attenuation (MNA) parameters were collected and shipped to Eurofins Lancaster Laboratories Environmental (Eurofins). The latest gauging information data are shown in Table 1. The samples collected during this event are summarized in Table 2 and illustrated in Figure 2. Field copies of groundwater low-flow datasheets are included in Attachment A, logbook notes are included in Attachment B, and field photographs are included in Attachment C. The laboratory results were reported in the RA Report, which was submitted in 2019.

3.2 VAPOR INTRUSION EVENT – JUNE 2018

A VI event was conducted on 5 June 2018. EA collected a total of 9 soil gas samples (including QC samples). Air samples were collected using laboratory-supplied Summa canisters. The samples were analyzed for VOCs using method TO-15 selective ion monitoring (SIM) or TO-15 Low Level. The samples collected during this event are summarized in Table 3 and illustrated in Figure 3. Field copies of VI datasheets are included in Attachment A, logbook notes are included in Attachment B, and field photographs are included in Attachment C. The laboratory results are included in Attachment D.

3.3 GROUNDWATER CMT WELLS SAMPLING EVENT – MAY 2018

A groundwater event was conducted from 14 through 17 May 2018. EA collected a total of 26 groundwater samples (including QC samples). Groundwater were collected using low-flow method. Some wells were dry and hence not sampled. CMT-04 was inaccessible and thus not sampled during the time of the sampling event. The samples collected were analyzed for VOCs and shipped to the Contract Laboratory Program (CLP) Laboratory. The samples collected during this event are summarized in Table 4 and illustrated in Figure 3. Field copies of groundwater low-flow datasheets are included in Attachment A, logbook notes are included in Attachment B, and field photographs are included in Attachment C. The laboratory results were reported in the RA Report, which was submitted in 2019.

3.4 GROUNDWATER SAMPLING EVENT – MAY 2018

A ground water event was conducted from 21 through 24 May 2018. EA collected a total of 15 groundwater samples (including QC samples). Groundwater were collected using low-flow method and a bailer when necessary. The samples were analyzed for VOCs and Metals and shipped to the EPA Region 6 Laboratory and the CLP Laboratory respectively. Additionally, MNA parameters were collected and shipped to Eurofins. The samples collected during this event are summarized in Table 2 and illustrated in Figure 2. Latest gauging information data are shown in Table 1. Field copies of groundwater low-flow datasheets are included in Attachment A, logbook notes are included in Attachment B, and field photographs are included in Attachment C. The laboratory results were reported in the RA Report, which was submitted in 2019.

3.5 GROUNDWATER SAMPLING EVENT – NOVEMBER 2018

A ground water event was conducted from 5 through 7 November 2018. EA collected a total of 15 groundwater samples (including QC samples). Groundwater were collected using low-flow method and a bailer when necessary. The samples were analyzed for VOCs and Metals and shipped to the EPA Region 6 Laboratory and the CLP Laboratory respectively. Additionally, MNA parameters were collected and shipped to Eurofins. The samples collected during this event are summarized in Table 2 and illustrated in Figure 2. Latest gauging information data are shown in Table 1. Field copies of groundwater low-flow datasheets are included in Attachment A, logbook notes are included in Attachment B, and field photographs are included

April 2020

in Attachment C. The laboratory results were reported in the RA Report, which was submitted in 2019.

3.6 VAPOR INTRUSION EVENT – NOVEMBER 2018

A vapor intrusion event was conducted on 6 November 2018 EA collected a total of 9 soil gas samples (including QC samples). Air samples were collected using laboratory supplied Summa canisters. The samples were analyzed for VOCs using method TO-15 SIM or TO-15 Low Level and were shipped to the EPA Region 6 Laboratory. The samples collected during this event are summarized in Table 3 and illustrated in Figure 3. Field copies of VI datasheets are included in Attachment A, logbook notes are included in Attachment B, and field photographs are included in Attachment C. The laboratory results are included in Attachment D.

3.7 WELL MAINTENANCE – MAY 2019

On 16 May 2019, EA performed well maintenance on CMT-04. The well is located on Tower Oaks Blvd and is down-gradient of the Jones Road Groundwater Plume Superfund Site. The asphalt was removed over CMT-04, and the area around the well head was cleaned. The new well pad was installed shortly thereafter. It is important to note that at the time of maintenance, road construction on Tower Oaks Blvd and around the CMT-04 well was also being performed, thus resulted in an increase in road elevation of 2-4 inches. Photos of the event can be found in the photolog in Attachment 3.

April 2020

4. REFERENCES

Harris County, Texas

Corpus Christi

Well Location Map

Remedial Design ones Road Ground Water Plume Harris County, Texas Figure 3 Air Sample Location Map

EA Project No.: 14342.70 Revision: 00 Table 1, Page 1 of 3 April 2020

Table 1 Monitoring Well Gauging Information

	Tubi		ring wen	Gauging I	niormation	Cuound
		Top of	TF-4-1	G		Ground
		Casing	Total	Screen		Water
Monitoring		Elevation	Depth1	Interval	Depth To Water	Elevation
Well ID	Date	(ft amsl)	(ft bgs)	(ft bgs)	(ft btoc)	(ft amsl)
MW-01	5/31/2017	124.08	35	2.5-35	25.02	99.06
MW-01	9/13/2017	124.08	35	2.5-35	22.93	101.15
MW-01	5/24/2018	124.08	35	2.5-35	24.24	99.84
MW-01	11/7/2018	124.08	35	2.5-35	21.35	103.05
MW-02	5/31/2017	124.40	35	2.5-35	23.17	101.23
MW-02	9/13/2017	124.40	35	2.5-35	20.60	103.80
MW-02	5/23/2018	124.40	35	2.5-35	21.65	102.75
MW-02	11/7/2018	124.40	35	2.5-35	18.20	106.20
MW-03	5/31/2017	123.83	35	2.5-35	22.26	101.57
MW-03	9/12/2017	123.83	35	2.5-35	19.23	104.60
MW-03	5/22/2018	123.83	35	2.5-35	20.80	103.03
MW-03	11/6/2018	123.83	35	2.5-35	16.43	107.40
MW-04	5/31/2017	124.18	35	2.0-35	21.98	102.20
MW-04	9/12/2017	124.18	35	2.0-35	19.05 21.10	105.13
MW-04	5/23/2018	124.18	35	2.0-35		103.08
MW-04 MW-05	11/6/2018 5/31/2017	124.18 124.58	35 35	2.0-35 2.0-35	15.66 22.88	108.52 101.70
MW-05	9/13/2017	124.58	35	2.0-35	20.04	101.70
MW-05	5/21/2018	124.58	35	2.0-35	21.60	104.34
MW-05	11/5/2018	124.58	35	2.0-35	21.60	102.98
MW-06	5/31/2017	124.09	35	2.0-35	34.83	89.26
MW-06	9/11/2017	124.09	35	2.0-35	31.20	92.89
MW-06	5/22/2018	124.09	35	2.0-35	33.80	90.29
MW-06	11/6/2018	124.09	35	2.0-35	30.71	93.38
MW-07	5/31/2017	124.16	35	20-35	29.36	94.80
MW-07	9/11/2017	124.16	35	20-35	26.73	97.43
MW-07	5/22/2018	124.16	35	20-35	29.43	94.73
MW-07	11/5/2018	124.16	35	20-35	26.29	97.87
MW-08	5/31/2017	124.82	36.5	20.5-35.5	20.24	104.58
MW-08	9/13/2017	124.82	36.5	20.5-35.5	17.61	107.21
MW-08	5/24/2018	124.82	36.5	20.5-35.5	could not access well	n/a
MW-08	11/5/2018	124.82	36.5	20.5-35.5	could not access well	n/a
MW-09	5/31/2017	127.23	35	20-35	24.87	102.36
MW-09	9/12/2017	127.23	35	20-35	22.10	105.13
MW-09	5/24/2018	127.23	35	20-35	24.33	102.90
MW-09	11/5/2018	127.23	35	20-35	20.70	106.53
MW-20	5/31/2017	124.5	32	25-30	27.71	96.79
MW-20	9/13/2017	124.5	32	25-30	35.00	89.50
MW-20	5/23/2018	124.5	32	25-30	27.71	96.79
MW-20	11/6/2018	124.5	32	25-30	24.83	99.67
MW-21	5/31/2017	124.16	32	25-30	27.46	96.70
MW-21	9/13/2017	124.16	32 32	25-30	24.78	99.38
MW-21	5/23/2018	124.16		25-30	27.11	97.05
MW-21 MW-22	11/7/2018 5/31/2017	124.16 124.73	32 55	25-30 48-53	23.62 48.10	100.54 76.63
MW-22 MW-22	9/12/2017	124.73	55 55	48-53	44.23	80.50
MW-22	5/22/2018	124.73	55	48-53	46.04	78.69
MW-22	11/6/2018	124.73	55	48-53	45.84	78.89
MW-23	5/31/2017	124.73	55	48-53	45.01	79.29
MW-23	9/12/2017	124.6	55	48-53	43.67	80.93
MW-23	5/21/2018	124.6	55	48-53	45.39	79.21
MW-23	11/5/2018	124.6	55	48-53	44.84	79.76

EA Project No.: 14342.70 Revision: 00 Table 1, Page 2 of 3 April 2020

Table 1 Monitoring Well Gauging Information

	Table		mg wen	Guuging I	niormation	
		Top of	TT 4 1	a		Ground
		Casing	Total	Screen		Water
Monitoring		Elevation	Depth1	Interval	Depth To Water	Elevation
Well ID	Date	(ft amsl)	(ft bgs)	(ft bgs)	(ft btoc)	(ft amsl)
MW-24	5/31/2017	124.37	55	48-53	21.48	102.89
MW-24	9/12/2017	124.37	55	48-53	17.44	106.93
MW-24	5/22/2018	124.37	55	48-53	21.74	102.63
MW-24	11/6/2018	124.37	55	48-53	17.93	106.44
CMT-01-1	5/30/2017		296	123	110.60	
CMT-01-1	5/17/2018		296	123	110.00	
CMT-01-2	5/30/2017		296	140	127.50	
CMT-01-2	5/17/2018		296	140	127.00	
CMT-01-3	5/30/2017		296	165	128.70	
CMT-01-3	5/17/2018		296	165	127.00	
CMT-01-4	5/30/2017		296	185	128.70	
CMT-01-4	5/17/2018		296	185	127.00	
CMT-01-5	5/30/2017 5/17/2018		296	215	139.40	
CMT-01-5	5/30/2017		296	215 245	139.00	
CMT-01-6 CMT-01-6	5/18/2018		296	245	122.40 123.00	
CMT-01-6 CMT-01-7	5/30/2017		296 296	245	140.40	
CMT-01-7 CMT-01-7	5/18/2018		296	290	140.40	
CMT-01-7 CMT-02-1	5/22/2017	123.20	300	170	132.00	-8.80
CMT-02-1	5/18/2018	123.20	300	170	130.50	-7.30
CMT-02-2	5/22/2017	123.20	300	182	131.00	-7.80
CMT-02-2	5/18/2018	123.20	300	182	130.00	-6.80
CMT-02-3	5/22/2017	123.20	300	222	144.50	-21.30
CMT-02-3	5/18/2018	123.20	300	222	143.00	-19.80
CMT-02-4	5/22/2017	123.20	300	240	145.00	-21.80
CMT-02-4	5/18/2018	123.20	300	240	144.00	-20.80
CMT-02-5	5/22/2017	123.20	300	264	145.20	-22.00
CMT-02-5	5/18/2018	123.20	300	264	144.00	-20.80
CMT-02-6	5/22/2017	123.20	300	282	145.40	-22.20
CMT-02-6	5/18/2018	123.20	300	282	144.50	-21.30
CMT-02-7	5/22/2017	123.20	300	296	145.30	-22.10
CMT-02-7	5/18/2018	123.20	300	296	144.00	-20.80
CMT-03-1	5/23/2017	123.68	300	136	120.00	3.68
CMT-03-1	5/14/2018	123.68	300	136	118.50	5.18
CMT-03-2	5/23/2017	123.68	300	189	130.80	-7.12
CMT-03-2	5/14/2018	123.68	300	189	128.50	-4.82
CMT-03-3	5/23/2017	123.68	300	223	143.50	-19.82
CMT-03-3 CMT-03-4	5/14/2018 5/23/2017	123.68 123.68	300 300	223 243	141.00 142.00	-17.32 -18.32
CMT-03-4	5/14/2018	123.68	300	243	142.00	-18.32
CMT-03-4	5/23/2017	123.68	300	254	141.00	-17.32
CMT-03-5	5/14/2018	123.68	300	254		-17.32
CMT-03-6	5/23/2017	123.68	300	285	143.50	-19.82
CMT-03-6	5/14/2018	123.68	300	285	141.50	-17.82
CMT-03-7	5/23/2017	123.68	300	299	n/a	n/a
CMT-03-7	5/14/2018	123.68	300	299	142.00	-18.32
CMT-04-1	5/24/2017	123.76	300	145	129.80	-6.04
CMT-04-2	5/24/2017	123.76	300	173	128.00	-4.24
CMT-04-3	5/24/2017	123.76	300	187	128.00	-4.24
CMT-04-4	5/24/2017	123.76	300	224	141.50	-17.74
CMT-04-5	5/24/2017	123.76	300	254	141.00	-17.24
CMT-04-6	5/24/2017	123.76	300	282	142.00	-18.24

EA Project No.: 14342.70 Revision: 00

Table 1, Page 3 of 3 April 2020

Table 1 Monitoring Well Gauging Information

		Top of Casing	Total	Screen		Ground Water
Monitoring Well ID	Date	Elevation (ft amsl)	Depth1 (ft bgs)	Interval (ft bgs)	Depth To Water (ft btoc)	Elevation (ft amsl)
CMT-04-7	5/24/2017	123.76	300	295	142.50	-18.74
CMT-05-1	5/25/2017	124.61	300	138	128.80	-4.19
CMT-05-1	5/16/2018	124.61	300	138	127.00	-2.39
CMT-05-2	5/25/2017	124.61	300	150	128.70	-4.09
CMT-05-2	5/16/2018	124.61	300	150	127.00	-2.39
CMT-05-3	5/25/2017	124.61	300	180	129.00	-4.39
CMT-05-3	5/16/2018	124.61	300	180	127.00	-2.39
CMT-05-4	5/25/2017	124.61	300	223	140.50	-15.89
CMT-05-4	5/16/2018	124.61	300	223		
CMT-05-5	5/25/2017	124.61	300	24	140.50	-15.89
CMT-05-5	5/16/2018	124.61	300	24	134.00	-9.39
CMT-05-6	5/25/2017	124.61	300	275	141.30	-16.69
CMT-05-6	5/16/2018	124.61	300	275	140.00	-15.39
CMT-05-7	5/25/2017	124.61	300	287	141.50	-16.89
CMT-05-7	5/16/2018	124.61	300	287		

NOTE:

amsl = Above mean sea level.

bgs = Below ground surface.

ft = Feet/foot.

n/a = Not available.

*CMT depth to water measurements were recorded to the nearest 0.1' or to the nearest foot.

EA Project No.: 14342.70 Revision: 00

Table 2, Page 1 of 2
April 2020

Table 2 Monitor Well Sampling Information

	14370 2		amping miormau	
Monitoring Well		Volatile Organic Compound	Inorganic Analysis	Monitored Natural Attenuation Parameters
ID	Date	Analysis	(Including Mercury)	Analysis
	9/13/2017	X	X	X
MW-01	5/24/2018	X	X	X
	11/7/2018	X	X	X
	9/13/2017	X	X	X
MW-01-DUP	5/24/2018	X	X	X
	11/7/2018	X	X	X
	9/13/2017	X	X	X
MW-02	5/23/2018	X	X	X
	11/7/2018	X	X	X
	9/12/2017	X	X	X
MW-03	5/22/2018	X	X	X
	11/6/2018	X	X	X
	9/12/2017	X	X	X
MW-04	5/23/2018	X	X	X
	11/6/2018	X	X	X
	9/13/2017	X	X	X
MW-05	5/21/2018	X	X	X
	11/5/2018	X	X	X
	9/11/2017	X	X	X
MW-06	5/22/2018	X	X	X
	11/6/2018	X	X	X
	9/11/2017	X	X	X
MW-07	5/21/2018	X	X	X
	11/5/2018	X	X	X
MW-08	9/13/2017	X	X	X
	9/12/2017	X	X	X
MW-09	5/24/2018	X	X	X
	11/5/2018	X	X	X
	9/13/2017	X	X	X
MW-20	5/23/2018	X	X	X
	11/6/2018	X	X	X

Revision: 00 Table 2, Page 2 of 2 April 2020

Table 2 Monitor Well Sampling Information

			amping imormati	
Monitoring Well ID	Date	Volatile Organic Compound Analysis	Inorganic Analysis (Including Mercury)	Monitored Natural Attenuation Parameters Analysis
	9/13/2017	X	X	X
MW-21	5/23/2018	X	X	X
	11/7/2018	X	X	X
MW-21-DUP	11/7/2018	X	X	X
	9/12/2017	X	X	X
MW-22	5/22/2018	X	X	X
	11/6/2018	X	X	X
MW-22-DUP	9/12/2017	X	X	X
MW-22-DUP	5/22/2018	X	X	X
	9/12/2017	X	X	X
MW-23	5/21/2018	X	X	X
	11/5/2018	X	X	X
	9/12/2017	X	X	X
MW-24	5/22/2018	X	X	X
	11/6/2018	X	X	X

Revision: 00 Table 3, Page 1 of 1 April 2020

Table 3 Vapor Intrusion Sampling Information

	ipor intrusion Sampin	8	
Location	Sample ID	Date	TO-15
ASI-106	ASBKG-1-06052018	6/5/2018	X
ASI-100	ASI-106-11062018	11/6/2018	X
ASBKG-2	ASBKG-2-06052018	6/5/2018	X
ASBNU-2	ASBKG-2-11062018	11/6/2018	X
ASI-101	ASI-101-11062018	6/5/2018	X
ASI-101	ASI-101-11062018	11/6/2018	X
ACL 101 DUD	ASI-101-DUP-06052018	6/5/2018	X
ASI-101-DUP	ASI-101-DUP-11062018	11/6/2018	X
ASI-102	ASI-102-06052018	6/5/2018	X
ASI-102	ASI-102-11062018	11/6/2018	X
ASI-103	ASI-103-06052018	6/5/2018	X
ASI-103	ASI-103-11062018	11/6/2018	X
ASI-104	ASI-104-06052018	6/5/2018	X
ASI-104	ASI-104-11062018	11/6/2018	X
ASI-105	ASI-105-06052018	6/5/2018	X
ASI-103	ASI-105-11062018	11/6/2018	X
ASI-106	ASI-106-06052018	6/5/2018	X
A51-100	ASI-106-11062018	11/6/2018	X

Revision: 00 Table 4, Page 1 of 1

April 2020

Table 4 CMT Wells Sampling Information

Location ID	Sample ID	Date	Volatile Organic Compound Analysis
	CMT-01-1	5/17/2018	X
	CMT-01-2	5/17/2018	X
	CMT-01-3	5/17/2018	X
CMT-01	CMT-01-4	5/17/2018	X
	CMT-01-5	5/17/2018	X
	CMT-01-5-DUP	5/17/2018	X
	CMT-01-6	5/17/2018	X
	CMT-02-1	5/15/2018	X
	CMT-02-2	5/15/2018	X
	CMT-02-3	5/15/2018	X
CMT-02	CMT-02-4	5/15/2018	X
	CMT-02-5	5/15/2018	X
	CMT-02-6	5/15/2018	X
	CMT-02-6-DUP	5/15/2018	X
	CMT-03-1	5/14/2018	X
	CMT-03-2	5/14/2018	X
CMT-03	CMT-03-3	5/14/2018	X
CWII-03	CMT-03-4	5/14/2018	X
	CMT-03-4-DUP	5/14/2018	X
	CMT-03-6	5/14/2018	X
	CMT-05-1	5/16/2018	X
	CMT-05-2	5/16/2018	X
CMT-05	CMT-05-3	5/16/2018	X
	CMT-05-4	5/16/2018	X
	CMT-05-5	5/16/2018	X
	CMT-05-6	5/16/2018	X

Attachment 1

Field Forms

of
113

Well ID:	N	lw-1	Sample ID:	MW	-1	Sample Time	:: [[[[]				
Casing dia	meter/type:	2"			Well location	on: Fra	ent at	Grocer	-y	Weather:	Overest 80°
Screened	interval(s):	7.9	- 55		Sampling p	personnel:	W6-, 17	O	/		
Total dept	h:	35'			Sampling r	method: Low-fl	ow micropurge				
Initial dept	h to water (v	v/o pump):	22.93		Water leve	el indicator:	Geofer	h			
Final depth	n to water (w	ı/o pump):	75.78		Water qua	lity meter:	YSI				
Measuring	point: Nort	h side of casir	ng		Pump dept	th setting:	~ 28'		Pump type/m	odel:	55 Monsoon
5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		Δ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
1049	27.0	2852	9.8	0.75	6.68	. 96.8	23.43	200	41.64		
1048	27.5	2793	3.8	0.30	6.48	-116.1	23.58	200	35.64		
1051	1.027.8	2784	3.7	0.28	6.94	-118.3	23.73	200	22.28		
1054	27.8	2783	3.5	0.27	6.47	-120.8	23.87	200	19.06		
1057	27.9	2772	3.2	0.25	6.50	- 124.4	23.89	200	1996		
1100	28.1	2756	2.9	0.23	6.51	-127.4	23.91	200	20.55		
1,100	7011	21/0	~ .	0.41	D./!		4011	AUV	9011		
										1/4 gal	
										74 gal	
	-										
										-	
-											

Recorded By:	W. Can ter
U. 1888 S. M. H. B. M. B. W. H.	

Sheet	of
Date:	
91	13/17

Well ID:	MW	-02	Sample ID:	Mw.	-02	Sample Time	e: 1010				
Casing dia	meter/type:		377		Well location	on: Be		rket		Weather:	Coole Overeast 79°
Screened i	interval(s):	2.5	- 57		Sampling p	personnel:	WG, AU				
Total depth	n:	35			Sampling r		low micropurge				
Initial deptl	n to water (w/o pump):	20.60		Water leve	l indicator:	Geotech				
	to water (v		22.10		Water qua	lity meter:	YSI	1			
Measuring		th side of casin	g		Pump dept	h setting:	~27.0		Pump type/m		55 Monsoun
5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		Δ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
0945	24.8	1207	16.4	1.03	7.15	-28.6	21.61	200	30.02		
0948	25.1	1206	4.6	0.37	6.88	-68.0	21.49	200	22.79		
3991	25.4	1206	3.8	0.31	6.88	-83,8	21.47	200	21.78		
0994	29.6	1211	3.8	0.31	6.88	-90.2	21.42	200	19.83		
0957	258	1214	3.6	0.29	6.88	- 96.4	21,41	200)	19.33		
1000	260	1218	3.3	3.77	6.89	-99.9	71.41	200	14.38		
, ,		1610		0.27	01	61.1	- SI- H	۵00	1170	O. Soul	
										3.5gal	
										1.1900	
							+				
-			i k								
-											
			-								
-											
-			-								
								-			
										1-5	

	W. Canter	
Recorded By:	V V V V V V V V V V V V V V V V V V V	

Sheet	of
Date:	9/17/17
	HI WI

Well ID:	Mu	1-3	Sample ID:	Mw	-3	Sample Time					
Casing dia	meter/type:		2"		Well locati	on: Be	hind	Mehong		Weather:	Clear 86°
Screened i	nterval(s):	2.	5-35		Sampling	personnel:	WEIA	D			
Total depth	1:		35'		Sampling I	method: Low-flo	ow micropurge				
Initial depth	n to water (v	w/o pump): wy	2+10	19.23	Water leve	el indicator:	Geofech	1			
	to water (w		19,41		Water qua		YSI	-70		OC In	
Measuring	point: Nort	th side of casir	ng		Pump dep	th setting: 🤟	1111	27.5	Pump type/m		onsoer
5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		∆ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
1255	24.9	1/19	12.4	0.95	7.34	82.7	19.90	290	57.21		
1298	24.1	1111	4.1	0.34	6.44	98.9	19.93	290	48.56		
1301	24.6	1106	3.5	0.30	6.48	90.7	19.50	200	40.82		
1304	25.2	1108	3.8	0.31	6.83	79.8	19.52	200	39.00		
1307	29.4	1106	3.8	0.31	6.67	71.6	19.49	200	40.76		
1310	25.2	1103	3.5	0.29	6.67	69.0	19.50	200	32.12		
1/10	.,,,	110.	, , ,			0.0				34 gal	
			1							7	
-											
					-						

1	Can	0
V	. Gan	

Recorded By:_

Sheet _	of
Date:	11111
NANSWOOT	9/2/17

Well ID:	Mh	1.4	Sample ID:	Mw-	4	Sample Time					
Casing dia	meter/type:	2"			Well location	on: Be	hind 1	Melong	_	Weather:	Clear 87°
Screened i	nterval(s):	2'-35			Sampling p	ersonnel:	16,A6	/			
Total depth	1:	35			Sampling r	nethod: Low-flo	w micropurge	S			
Initial depti	n to water (v	w/o pump):	19-05		Water leve	I indicator:	Geotech				
Final depth	to water (v	v/o pump):	21:33		Water qua	lity meter:	YSI			- 7	
Measuring	point: Nor	th side of casir	ng		Pump dept	h setting:	28		Pump type/m		onsoon
5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		Δ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
1410	23.5	1985	75.2	6.08	6.96	-25.4	20.15	250	37.49		
1413	23.5	1578	5,2	0.43	6.28	- 29.6	20.33	250	40.26		Water his strong
1416	23.8	1581	3.2	0,27	6.31	- 45.3	20.50	250	29.34		oder Bie?
1419	23,9	1587	2.1	0.18	6.41	-63.5	20.53	250	23.4		
1422	23.9	1588	1.9	0.15	6.45	-72.2	20.67	250	21.77		
1425	23.9	1586	1.7	0.14	6.46	-79.6	20.70	250	19.43		
112		7700			U		70.10		1	3/4 961	
							19			1/40	
	-										
								-			
		7									

Recorded By:	V. Comfor	

Sheet_	of
Date:	
	01/13/13

Well ID:	Mw		Sample ID:	Mr	.5	Sample Time	: 1615				
Casing dia	meter/type:	2"			Well locati	on: Be	hidd M	elong		Weather:	Overcast 80°
Screened i	nterval(s):	2-3	5		Sampling p	personnel:	WG,	10			
Total depth	n:	35			Sampling i	method: Low-fl	ow micropurge				
Initial depth	n to water (v	v/o pump):	20.04		Water leve	el indicator: (3 eotech				
Final depth	to water (w	v/o pump):	20.95		Water qua	lity meter:	YSI				
Measuring	point: Nort	th side of casir	ng		Pump dep	th setting:	-28.	0	Pump type/mo	odel: 5	Mongoon
5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		Δ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	pН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
1950	24.4	1997	13.4	1.68	6.84	79.8	20.56	200	Ay 64.53		
1553	23.7	1937	9.6	0.81	6.29	93.0	20.80	200	58.34		
1596	24.1	1915	10.9	0.91	6.31	89.7	20.82	200	810 as		
1999	24.1	1911	111	0.93	6.34	88.2	20.82	200	136 ou		
1602	24.1	1916	11.4	0.96	6.41	85.6	20.89	200	92.95		
1609	24.1	1936	119.5	0.88	6.44	83.7	20.85	200	79-12		
1607	41.1	11/6	(1).7	0.00	D.Tt	01.1	40.07	300	1112	3/4 gal	
-							1			19 gal	
) h										

	(). Ganter
Recorded By:	M. Owile.

Ground	Water	Sampling	Data	Shee

Sheet _	of
Date:	
4	1/11/17

Well ID:	M.	N-06	Sample ID	Mw-	06	Sample Tim	e: 1645				
Casing dia	meter/type:	7"			Well location	ո։				Weather:	Jasm cleur 850
7 4 1	interval(s):	2	- 35		Sampling pe	ersonnel:	WG. AB				<u> </u>
Total dept	h:	35			Sampling me	ethod: Low-1	low micropurge				
	h to water (w/o pump):	31.2		Water level	indicator:	Geotech				
Final deptl	n to water (v	v/o pump):	33.7		Water qualit	y meter:	YSI				
Measuring	point: Nor	th side of casin	ig		Pump depth	setting:			Pump type/m	odel:	
5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH	*	∆ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
		1) 1									
		Hand									
		100									
		0.1									
								y .			
					-						
-	1						-				

	()	
	W. Canter	
Recorded Bv:	0 - 0 - 1 -	

Sheet	of
Date:	9/11/17

Well ID:	Mu-	_	Sample ID:	My	- 7	Sample Time	e: 1315				,
Casing dia	meter/type:	2"			Well location	i:				Weather:	Warm Clear 85°
Screened	interval(s):	20	-35		Sampling pe	ersonnel:	WEN	10			
Total dept	h:		35'		Sampling m	ethod: Low-f	low micropurge				
Initial dept	h to water (w/o pump):	26.73		Water level	indicator:	Geoter	h			
Final depti	n to water (v	w/o pump): 2	7.13		Water qualit	y meter:	YSI			66	A //
Measuring	point: Nor	th side of casin	ig		Pump depth	setting:	32'		Pump type/m		Monsoon wg
5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		Δ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
		Han	1								
		1,9	1								
		9	ill								
											Collected FB/ER
							+	1			
	-					_					

	1 M	
	W 6	
Recorded By:		

Sheet	of
Date:	
	9/13/17

Well ID	Mu-	8	Sample ID:	Mw	- 8	Sample Tim	e: 0815] [
Casing dia	ameter/type:	Ē	2"		Well location	on: L	umber Yo	erd		Weather:	Cool, Overcast 73°
Screened	interval(s):		39.5		Sampling p	ersonnel:	wo,	AP			
Total dept	h:	36.			Sampling r	nethod: Low-f	low micropurge				
Initial dept	th to water (w/o pump):	17.61		Water leve	l indicator:	Geolee	h			
Final dept	h to water (v	v/o pump):	17.81		Water qua	ity meter:	YSI				
Measuring	point: Nor	th side of casir	ng		Pump dept	h setting:	26		Pump type/m	nodel: 55 mo	nsoon
5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		Δ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
159	23.5	1458	15.9	1.24	6.69	106.0	17.99	200	7144		
758	24.0	1498	4.2	0.35	6.83	91.3	17.87	200	60.29		
758 801 804	24.1	1458	4.1	0.34	6.84	87.8	17.83	200	48.93		
804	24.3	1459	3.7	0.31	6.84	86.5	17.83	200	42.86		
807	24.3	1459	4.5	0.37	6.82	87.1	17.82	200	40.44		
										0.9 galug	
										3401	
		4								700	
							1				
	1										
								-			
	13-										

Recorded By:	W. Ganter
recorded by	

Sheet_	of
Date: _	
	9/13/17

Well ID:	Nw	-20	Sample ID:	Mw-	20	Sample Time					1
Casing dia	meter/type:	2"	1		Well location	on: Peri	hin Lot	Cypress	Centre	Weather:	Overcast 88°
Screened i	nterval(s):	20-			Sampling p	ersonnel:	WG,AL	3 "			
Total depth	1:	32']	55.0		Sampling r	nethod: Low-fl	ow micropurge				
Initial depth	to water (v	v/o pump):	25.58		Water leve	I indicator:	Geolech				
Final depth	to water (w	v/o pump):			Water qua	lity meter:	YSI				
Measuring	point: Nort	th side of casir	ng		Pump dept	h setting:	29'		Pump type/m	odel: 55	Monsoo
5 min	Δ < 10%	Δ < 10%			∆ < 0.1 pH		Δ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
1325	28.2	2938	12.0	0.91	6.93	-60.8	26,23	200	1300 au		Water level 13
1328	29.0	2966	3.1	0.24	6.17	-55.0	26.04	200	1509 au		very low: Pump wont
1331	29.3	2970	2.7	0.21	6.21	-60.6	26.05	200	733av		90 past 30'
1334	29.3	2975	2.7	0-21	6.26	-64.7	26.05	200	626ev		
1337	293	2984	2.6	0.19	6.32	-69.4	26.09	200	86-107	27.2	
1340	29.2	2989	2.2	0.17	6.34	-70.2	2/.13	200	68.24		
17.0	211	, 0 ,	Z. Z	0.07	- / -	1010	-0117	200	00.51		
										Mysl	
										rygal	
									-		
					-						
							-				

Recorded By:	1. banter
necoraca by	O V

Sheet	of
Date:	, , , ,
90	12/17

Well ID:	Ma	N-9	Sample ID:	Mw	-9	Sample Time	e: 1800			1 1	
	meter/type:	211			Well location		ework Si	hack		Weather:	Clear 80°
	interval(s):	20-35			Sampling p		WG, AB				
Total dept		36'	001				ow micropurge				
Initial dept	h to water (w/o pump):	22.1		Water leve		Geolech	1			
	n to water (v		24.95		Water qual	F-1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	YSI			20	11
		th side of casi	ng		Pump dept	h setting:	41		Pump type/m		Mansoen
5 min	Δ < 10%	Δ < 10%			∆ < 0.1 pH		Δ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
1738	24.6	1734	14.9	1.20	6.59	17.9	21.83	200	80.63		
1791	24.9	1722	12.5	101	6.38	22.7	23.34	200	156.0		
1744	26.1	1714	10.0	0.80	6.39	14.5	23.30	200	149.0		
1747	26.4	1721	8.8	19.70	6.43	-1,9	23.29	200	86.0		
1750	27.0	1705	7.7	0.61	6.63	-11.0	23.32	200	71.8		
1753	27.2	1688	77	0.57	6.65	-15.0	23.31	200	46.0		
1756	27.5	1674	6.8	0.53	6.66	-18.2	23.30	200	92.41		
1799		101		0 ,, ,			3.70	100	45.71	7/4 w9 34al	
117										11 1/4	
										-	
										-	
				-							

	1/6
Recorded By:	W. Gamile

Sheet _	of
Date:	
	9/13/17

Well ID:	Mu	-21	Sample ID:	Mw-	2)	Sample Time	1919				
Casing dia	meter/type:	2"			Well location	on: Pel	Groomin	g Phin	g Lot	Weather: (Overcust Breazy 89'
Screened i	nterval(s):	0.0			Sampling p	ersonnel:	WG, AB	,			
Total depth	n:	29	.73		Sampling n	nethod: Low-flo	ow micropurge				
Initial depti	n to water (v	v/o pump):	24.78		Water leve	I indicator:	rotech				
Final depth	to water (w	v/o pump):	25.01		Water qual		YSI				
Measuring	point: Nort	h side of casir	ng		Pump dept	h setting: 2	7'		Pump type/m	odel: 55 N	lonsoon
5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		∆ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
1453	27.3	1992	32.7	2.44	6.39	26.5	25.07	200	49.75		
1456	18.1	1973	4.4	0,34	6.23	29.6	25.03	200	39.90		
1459	28.4	1877	3.7	0.28	6,27	30.9	29.03	200	33.10		
1502	28.5	1853	3.3	0.25	6.30	30.9	25.03	200	25.44		
1505	28.6	1836	2.7	0.21	6.37	30.6	25.05	200	19,24		
1508	28.6	1837	2.5	0.19	6.39	30.1	29.06	200	12.28	3gal	
										/	

	· · · · ·
Recorded By:	1 Can 1C

Sheet	of	
Date:		
	1/12	717

Well ID:	My.	77	Sample ID	· Mw	22	Sample Time	: 1120				
Casing dia	meter/type:	2"			Well locati	on: Cyp	ress Ce	utre		Weather: /	Tear 82°
Screened i	nterval(s):	48-9	3		Sampling	personnel:	WE	AB			
Total depth	n:				Sampling	method: Low-fl	ow micropurge				
nitial depth	to water (v		44.23		Water leve	el indicator:	Geofec	h			
inal depth	to water (w	v/o pump):	15.87		Water qua	lity meter:	YSI				
Measuring	point: Nort	th side of casir	ng		Pump dep	th setting:	51'		Pump type/m		Mousoon
5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		Δ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
1100	25.9	2927	34.1	2.34	6.49	26.5	45.27	200	18.00		
1103	25.8	2941	8.1	0.64	6.24	9.7	45.05	200	91.0.		
1106	29.8	1848	4,9	0-39	6.21	-0.5	44.96	200	61300 E	136	
1104	26.1	2807	4.)	0.33	6.25	-6.8	44.98	220	97	7.0	
1117	26.3	2792	3.9	0.31	6.34	-15.7	44,96	260	38.0		
1115	21.6	2787	3.5	0.28	6.38	-20.8	44.96	200	76.71		
	76.0							7,0	70.1		
										~ 3941	
										1/4/	
							-				
				-							
									1		
										-	

	Con to	1
1	1. bante	

of	
gin h	7
	9/2 h

Well ID:	My.	-23	Sample ID:	Mw-	23	Sample Tim	e: 0990				
Casing dia	meter/type:	2"			Well location	on:				Weather:	Clear 80°
Screened	interval(s):	48- 53			Sampling p	ersonnel:	WG AB				
Total depti		55	T 6.5				low micropurge				
	n to water (v	w/o pump):	43.67		Water leve	7717	Geofect				
Final depth	n to water (v	v/o pump):	49.21		Water qual		YSI				
Measuring	point: Nor	th side of casir	ng		Pump dept	h setting:	51'		Pump type/m	odel: Me	หรอยา
5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		Δ < 0.3 ft	< 1∐min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
0935	27.2	1167	22.4	1.75	7.12	57.8	46.25	300	60.08		
0938	25.1	1168	12.5	1.02	7.08	49.0	46.27	250	54.35		
6941	25.4	1173	10.9	0.88	7.05	43.2	46.41	250	85,53		
0938 0941 0944	25.6	1109	8.3	0.67	7.05	34.6	45.91	250	147.0		
0947	26.0	1194	8.7	0.70	7.04	28.5	45.51	7.50	678.0		
		1000	-0-1	10			1.7.	uese		Zoal	
									U.II	1	
			\$ 1								
				44							
			**								

	1 Contract
Recorded By:	W. Garter

Sheet	of
Date: _	9/12/17

Well ID:	Mr	-24	Sample ID	· Mw-	24		e: 0855			[
Casing dia	meter/type:				Well location	on: Oki		-		Weather:	Clear 79°
Screened	nterval(s):	48-	53		Sampling p	ersonnel:	W6, 16)			
Total depti	1:	59			Sampling n	nethod: Low-t	flow micropurge				
Initial dept	n to water (w/o pump):	7.44		Water leve	I indicator:	Georech				
Final depth	to water (v	v/o pump): 5	1.98		Water qual	ity meter:	YSI			od	1.
Measuring		th side of casir	ng		Pump dept	h setting:	51'		Pump type/m		Mon 306 n
5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		∆ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
825	25.2	1051	9.1	0.65	7.39	13.7	21.76	200	41.61		
828	75.5	1030	6.2	6.50	7.32	4.9	23,45	200	36.24		
831	29.8	1034	6.2	0.50	7.30	0.1	24.09	250	39.87		
834	25.8	1026	4.6	0.45	7.30	-1.8	24.94	250	34.53		
837	26.1	1017	9.7	0.46	7.50	- 2.6	29.77	200	31.85		
840	26.1	1009	5.2	0.90	7.30	-1.1	26.60	290	30.21		
843	26.1	989	6.8	0.95	7.31	2.3	27.3	250	30.43		
946	7/1	looi	6.8	0.57	7.30	7.1	27.47	290)	30.32		
946 849	26.1	1003	5.4	0.48	7.30	-1.8	28.60	750	29.8		
892	25.8	933	9.6	0.59	7.32	10.0	29.7	290	27.2		
0/4	27:10	177	(10)	0.71	11.76	10:0	X /	-10	27.6	4gal	
										1700	
				1							
					Also and a						

Recorded By:	W Ginter	

Sheet	of ,
Date:	9/11/17

Well ID:	Mu			1		Sample Time				l I	0.6		
Casing dia	meter/type:	211			Well location	n:				Weather:	Clear 85°		
Screened i	nterval(s):		23-28		Sampling pe	rsonnel:	WG,	1B					
Total depth):		30		Sampling me	ethod: Low-fle	ow micropurge						
Initial depti	n to water (v	w/o pump):	29.93		Water level	indicator:							
Final depth	to water (v	v/o pump):	29.53		Water qualit	y meter:	YSI						
Measuring	point: Nor	th side of casin	ıg		Pump depth	Pump depth setting: Pump type/model:							
5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		∆ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)		
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments		
											No Sample		
											NO TOWNE		
							la l						

	1 10	
	10/16	
	000	
Recorded By:		

Recorded By:_

Ground Water Sampling Data Sheet

Well ID:	CMT.	-0	Sample ID:			Sample Time	e:							
Casing diar	meter/type:	3/8" CMT Chan	nel		Well location	on:				Weather: 5	00° Sunny Humid			
Screened in		1			Sampling p	personnel:	WG.11	В			/ «			
otal depth	C				Sampling r	method:	cut							
nitial depth	to water (w	v/o pump):			Water leve	el indicator:	Solinst							
	to water (w			Water quality meter: YSI										
Measuring point: North side of casing			1		Pump dep	th setting:		Pump type/model:						
3-5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		Δ < 0.3 ft	< 1L/min	< 10 NTU	< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)			
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments			
0829	29.7	662.1			6.97	199.0	7		67.9		CM7-01-7 Collapsed (72.5)			
430											IN X			
825	29.7	684.2			7.08	133.0			17.3		CM9-01-6 (0840) + Msmsd			
830	25.7	662.1			6.97	1990			67.5		Idw 123.0 = F: 123.5			
0906	26.9	665.3			7.29	162.0			144		(M9-01-5 (0915) + DUDE			
0905	26.4	596 8			8.00	154.0			21.2		Idw 139.0 F:139.0			
0930	27.0	462.4			8.14	1490			4.44		(MT-01-4 (0940 12.75 Voes)			
0935	27.0	466.3			8-12	153.0			33.5		Idw 127.0 _ F:127.5			
1000	27.9	613.4			8.14	143.0			9.05		CM7-101-3 (1015)			
1010	27.6	969.8			8.06	109			21.8		Idw 127.0 F 127'			
1030	287	512.2			7.89	121			8.66		CM7-11-2 (1040)			
1035	28.6	528.7			7.96	115			788AD		Idw - 127.0 _ F-127			
lian	29.3	376.9			8.02	135			OVR		(MT-01-1 (1110)			
1109	29.5	357.7			7.78	147			2 103.09		Idw -110.0 F 111.0			
IIV !	71./	1111			1				7 414					
			1	1										
							1.	1						
_														

W. Carted

Sheet	of
Date: _	
	5/15/18

Well ID:	(M9	-02	Sample ID:			Sample Time:				l	
Casing dia	meter/type:	3/8" CMT Char	nnel		Well locati	ion:				Weather:	170t 100°
Screened i			/	/	Sampling	personnel:	1.16=17	18			101 00
Total depth	n:				Sampling	method:	CM				
Initial dept	n to water (w	ı/o pump):			Water leve	el indicator:	Solinsi	1			
	to water (w				Water qua	lity meter:	YSI				
_		h side of casing			Pump dep	th setting:			Pump type/m	nodel:	
3-5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		Δ < 0.3 ft	< 1L/min	< 10 NTU	< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	pН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
		-			Cont	Leach Vale			-		CMT-07-7 Sample X (Collapse)
-		_				- Maria					Idv: 144.0 F 144.0=
1009	29.4	792.2			7.25	-77.0			100.9		CM9-06-6 Sample (1015)
1010	29.1	750.7			7.12	-89.0			23.5		Idw: 194.5 = 144.5
1030	29.0	746.8			7.50	-72.0		-	11.06		(MT-02-5 Garnale (1045)
1035	28.1	770.1			7.31	-96.0			5.97		tow: 144.0 F 144.0
1/20	3).1	766.5			87.57	-85			18.7		CM9-01-4 Sanale (130)
1125	30.8	766.2			7.24	-88			3.64		Idw: 144.0 F 194.5
1140	29.9	7690			7.41	-610			51.7		CM9-02-3 Sample (150)
1145	29.8	769.5			7.15	-72,0			5.92		Idu = 143.0 F. 143.0
1205	30.6	780.4			7.12	-81.0			63,9		(M9-02-2 Somple (1215)
1210	30.3	781.1			7.05	-70.4			-13.0		Idw: 13000 F 130.5
1240	31.5	762.3			7.18	-89.0			720AU		CM9-02-1 Sample (250)
1245	31.7	759.0			7.03	-83.0			740AV		Tay: 130,5 F 1310
					,						
- '											

		1		
Recorded By:	1	Tant	CV	
				_

Recorded By:

Sheet	of
Date:	

Ground Water Sampling Data Sheet

		3/8" CMT Cha	nnel		Well locat		. //	17)		Weather:	Not 100°
	nterval(s):					personnel:	W6/	10			
otal depth	n to water (w	ula numan\u			Sampling		Solins	. /-			
	to water (w					el indicator:					
		h side of casing	1		Pump dep	ality meter:	YSI		Pump type/m	andal:	
3-5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH	an setting.	Δ < 0.3 ft	< 1L/min	< 10 NTU	< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
1299	30.1	1075	No So	unde	7.73	410		1.	OL	/	CM7-3-1 Sample THSX
1310	31.5	1230		1	8.25	43.0	/	1	02	/	Idly - 118.5 F: Dry Not enough water
1330	28.8	839.4			8.02	-56.0			65.8	/	(M9-3-2 Famole (1340)
1335	28.5	850.1	1,	/,	8.33	-13.0	1	/	69.1	/	Idu - 128,5 F 134.5
1350	30.6	979.7		/	7.74	-70.0	/	/	11.3	/	(M9-3-3 Scendle (1400)
1399	28.4	7710	/	1	7.51	-116.0			6.32	1	Idw -1410 F: 1485
1505	31.2	791.7	/	/	7.57	-109	1	1	8.16	/	(M7-3-4 Samble (1915) Dupe
1910	30.5	703.2	/	/	7.93	-103		1	9.02	1	2d-1420 F:143
-	-	~	-	-	-	J	****	Bloched	6 115		(M9-3-5 Sample)
-	~	-	~	-	-	1	2	-)	1	X
540	31.0	740.0			7.85	-75.0	1	/	4.35	1	CM7-3-6 Jample 1600 only
1950	day	dry			2dry	Dry	/	/	des	1	Idw 141.5 F 143.75
	· ·	7	. 1	1	10	malle 1.	1 1				CM7-3-7 Sample: Blochage
		1	13 pl	ugg ed	4/ 6	10/40 Tel	L sand,				Idw - 1420 F: 1420
			b								
				ž.							
		3									

WE

	Sheet of
	Date:
Ground Water Sampling Data Sheet	5/16/18

Well ID:	(M9	-05	Sample ID			Sample Time	:	1		1	
Casing dia	meter/type:	3/8" CMT Chan	nel		Well loca	tion:				Weather:	1000° Hymid, Sun
	interval(s):		/			personnel:	JG/1R				1000
Total dept	h:				Sampling		CM9				
Initial dept	h to water (v	v/o pump):			Water lev	el indicator:	Solinst				
Final dept	h to water (w	v/o pump):				ality meter:	YSI				
Measuring	point: Nort	h side of casing			Pump de	oth setting:			Pump type/n	nodel:	
3-5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		Δ < 0.3 ft	< 1L/min	< 10 NTU	< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
					OBstru	ction 491	~				CMJ-05-7 X
											Idw: Obstruction 49'
0915	29.2	963.2			7.66	170			0		CMT-05-6 Sermale (0925)
0920	25.7	701.1			7.78	105		1/1	1227AD		Idy: 140.0 F 140'
77925	25.3	682.3			6.86	-5.0			47.5		CMY-05-5 Sounds (1000)
10990	25.2	717.3			7.20	-79.0			24.8		Idw: 134.0 F140
79955W	26.2	691.1			7.24	-75.0			19.9		CM - 05 - 4 Sample (035)
1030	26.0	690.5			7.21	-67.0			9.79		Idw: D Prope want go down 137
1099	26.4	720.3			6.90	-95			11.5		[M9-05-3 Sample (117)
1100	26-5	728.7			6.93	-101.0			15.4		eldu: 127.0 F-127
1115	27.5	8010			7.20	-99.0			1318AD		CM7-05-2 Sample (1131)
1120	27.4	803.6			7.11	7-84-84			966 AU		ddw: 127.0 F:127_
1190	29.1	722.3			7.54	-130.0			-96.0		CM7-05-1 Sample (1200)
1155	27.2	7643.0			7.76	109	1		-86.0		Idw: 127.0 F 126.0
			1	,						Ï	
								**			
						2)					
	V = 1					-	7= = = =				

W. Gamter

Sheet	of
Date:	Charles
	5/24/18

Well ID:	MW		Sample ID:	MW	-01	Sample Time	0830					
Casing dia	meter/type:		2 "		Well locati	on: lala	(market	front		Weather:	poler 80° Clear	
Screened i	nterval(s):		19-39		Sampling	personnel: 4	16/10					
Total depth	n:		35		Sampling	method: Low-fl	ow micropurge					
Initial depth	to water (v	v/o pump):	24.24		Water leve	el indicator:	lteron					
	to water (w		25.72		Water qua	lity meter:	YSI					
Measuring point: North side of casing					Pump depth setting: 50			Pump type/model: 29 Monsoon				
5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		∆ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)	
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments	
0790	25.24	1.363	74.1	5.80	6.59	-166.4	350-20	29.62	27.5			
0799	25.54	1.368	19.0	1.54	6.96	-149.7	25.94	375	13.6			
0800	25.71	1.367	14.9	1.21	6.55	-146.3	26.34	400	10.88			
0809	29.83	1,364	12.3	0.49	6.54	-196.3	26.36	400	7.68			
0810	25.94	1.362	12.0	0.97	6.94	-198.3	26.59	350	6.50			
0815	26.01	1.362	13.4	1.08	6.94	-146.9	76.59	350	4.42			
0820	26.08	1.365	13.0	1.05	6.59	-141.3	26.64	350	3.67			
								10				

W. Comfe

Sheet	of
Date:	
61-	13/16
7/	13/18

Well location: Joure Low-flow micropurge Sampling personnel: Joure Low-flow micropurge					1340	Sample Time	02	Mw-	Sample ID:	1-02	Mi	Well ID:	
Total depth:	lain 90°	Weather:			es ld.	on: Jon	Well location		!	2"	meter/type:	Casing dia	
Initial depth to water (w/o pump): 21.65 Water level indicator:	***************************************			žį.	JB/UG	ersonnel:	Sampling p				interval(s):	Screened	
Water quality meter: YSI Measuring point: North side of casing Pump depth setting: YSI Pump type/model: SS Mon Sign					ow micropurge	nethod: Low-fle	Sampling n		39		h:	Total dept	
Measuring point: North side of casing Pump depth setting: 30 Pump type/model: 55 Mon 500 ×					Heron	l indicator:	Water leve			v/o pump):	h to water (v	Initial dept	
5 min Δ < 10% Δ < 10 pH Δ < 0.1 pH Δ < 0.3 ft < 11/min < 0.5 L/min Parameter Stabilization Limits (3 consecutive reading to consecut						ity meter:	Water qual		23.86	//o pump):	n to water (w	Final depth	
5 min Δ < 10% Δ < 10 pH Δ < 0.1 pH Δ < 0.3 ft < 11/min < 0.5 L/min Parameter Stabilization Limits (3 consecutive reading to consecut	Monsoon	odel: 55	Pump type/m		30	h setting:	Pump depti		Measuring point: North side of casing				
Time (c) (mS/cm) or (μS/cm) or (μS/cm) or (μS/cm) or (μS/cm) (s) (mg/L) pH (mV) (mV) (teet bloc) (L/min) or (mL/min) or (mL/m	Parameter Stabilization Limits (3 consecutive readings)			< 1L/min	Δ < 0.3 ft		Δ < 0.1 pH				Δ < 10%	5 min	
1305 23.88 1.042 396.5 31.18 6.83 -202.5 22.507 35.007 1034au 1310 23.88 1.040 47.6 3.72 6.79 -222.4 25.09 300 -32.0 1315 24.10 1.037 18.6 1.54 6.79 -203.2 25.34 37.5 55.0 1320 24.45 1.035 12.9 1.07 6.76 -200.8 25.54 37.5 39.5 1325 24.58 1.033 12.1 1.01 6.76 -204.6 25.54 400 27.0	Additional Comments	Volume		(L/min) or			рН			(mS/cm) or		Time	
1317 24.10 1.037 18.6 1.54 6.79 -203.7 25.34 37.5 55.0 1320 24.45 1.035 12.9 1.07 6.76 -200.8 25.54 37.5 39.5 1325 24.58 1.033 12.1 1.01 6.76 -204.6 25.54 400 27.0	*		103400	75,00%	1000	-202.5		31.18	396.5	1.042			
1317 24.10 1.037 18.6 1.54 6.79 -203.7 25.34 37.5 55.0 1320 24.45 1.035 12.9 1.07 6.76 -200.8 25.54 37.5 39.5 1325 24.58 1.033 12.1 1.01 6.76 -204.6 25.54 400 27.0			- 32.0	300	25.04	-222.4	6.79	3.72		1.040	23.88	1310	
1320 24.45 1.035 12.9 1.07 6.76 -200.8 25.54 375 39.5 1325 24.58 1.033 12.1 1.01 6.76 -204.6 25.54 400 27.0			55.0	375	75.34	-203.2	6.79	1.94	18.6	1.037	24.10	1315	
1325 24.58 1.033 12.1 1.01 6.76 -204.6 25.54 400 27.0				/	25.54		6.76	1.07	12.9	1.035	24.45	1320	
12: 21/7				1					12.1	1.033	24.58	1325	
1100 1107 1107 11017 11017 11017 11017										- / /	24.67		
			6/	///	41.10	1141/	0.77	0-1/	11.7			1,10	
								-					

Decembed Don	1 Sunter
Recorded By:	//

7/1

sing dia	neter/type:	7	11		Well locati	on: Be	hind Me	Long		Weather:	00000 F 1000 Homidity Sunny
	nterval(s):		25-35		Sampling p		116/18			Weather.	soot working awing
al depth			39				low micropurge	ı			
al depth	to water (v	v/o pump):	20.80		Water leve	el indicator:	Heron				
al depth	to water (w	ı/o pump):	21.04		Water qua	lity meter:	YSI				
asuring	point: Nort	h side of casin	ıg		Pump dep	th setting:	30		Pump type/m	nodel:	
5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		∆ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
ime	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
10	23.54	0.537	206.3	12.94	6.89	38.5	21.34	300	71		
15	17.21	0.531	49.8	3.75	6.58	42.9	21.39	390	112.0		
0	23.36	0.532	34.4	2.92	6.64	40.5	21.41	350	95.2		
15	23.41	0.533	30.6	2.57	6.71	39.2	21.44	350	82.3		
30	23.22	0,535	24.9	2.12	6.72	43.5	21.47	390	44.5		
35	23.20	0.536	20,2	1.71	6.73	42.5	21.48	390	32.3		
			-								

W. Confo

Sheet	of
Date:	
	1/2-1-1

slormy 90°
lization Limits (3 consecutive readings)
dditional Comments
- V

	1101
Recorded By:	W. Ganter

Sheet	of
Date:	
9	5/2/118

Well ID:	M_{\sim}	-05	Sample ID:	My	-09	Sample Time	1430			[
Casing dia	meter/type:	2"			Well location	on: Beling	1 Me Lou	ng		Weather:	90 - 1000 it
Screened i	nterval(s):	25.5	- 39.90)	Sampling p	ersonnel:	116/18	2			
Total depth	1:	39.	.5		Sampling r	nethod: Low-flo	ow micropurge	1			
Initial depth	n to water (v	v/o pump):	21.60		Water leve	l indicator:	Heron				
Final depth to water (w/o pump): 27.34 Water quality meter: YSI											
Measuring	point: Nort	h side of casir	ng		Pump depth setting: 30				Pump type/m	odel: 55	Man 500 9
5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		Δ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (m\$/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
1400	24.39	1.300	65.3	5.29	6.54	48.7	27.08	300	1677Av		Wester 13 ovange from
1405	23.19	1.327	27.9	2.36	6.42	23.5	22.07	250	192010	1	injection
1410	23.63	1.329	18.5	1.56	6.45	2.1	22.10	300	1511 as		,
1415	23.75	1.319	15.9	1.33	6,47	- 4.5	22.14	300	117700		
1420	23.85	1.313	14.1	1.18	6.47	-9.0	22.06	250	775av		
1425	23.98	1.309	12.7	1.07	6.47	-10.8	22.11	390	699 av		
										7	

W. Ganter

Sheet	of
Date:	
51	22/18

Well ID:	MN	-6	Sample ID:	Mir	-6	Sample Time	0920				
Casing dia	meter/type:	2"			Well location	n:				Weather:	
Screened i	interval(s):				Sampling pe	ersonnel:					
Total depth	n:						ow micropurge				
	h to water (v	v/o pump):	33.80		Water level						
Final depth	n to water (v	v/o pump):	Dry		Water qualit	ty meter:	YSI				
Measuring	point: Nor	th side of casin	g /		Pump depth	setting:			Pump type/m	odel:	
5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		Δ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
			17	1							
			14								
			UC	alle.							
				-						- +	
										-	
A) a											
							-				
	-										
A					14						

W. Cantos

Sheet	of
Date:	

Well ID:	MW	-7	Sample ID:	Mw-	7	Sample Time	1300				
Casing dia	meter/type:				Well location	1: BFER	ock Uub	Purkay	Lot	Weather: P	JHOT-90:F
Screened i	nterval(s):		20-39		Sampling pe	ersonnel: W	6 JTB				
Total depth	1:		35		Sampling me	ethod: Low-fl	ow micropurge				
Initial depth	n to water (v	w/o pump):	29.43		Water level	indicator:	leven				
Final depth	to water (v	v/o pump):	29.71		Water qualit	y meter:	YSI				
Measuring	point: Nor	th side of casir	ng '		Pump depth	setting:			Pump type/m	odel: 55	Mousson
5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		Δ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
			A								
			15	1							
			1/0	6							
			-								
			7								

Sheet	of
Date:	
5,	124/18

sing dia	meter/type:	2 11			Well location	1:				Weather:	
eened i	nterval(s):			/	Sampling pe	ersonnel:		/			
al depth	1:				Sampling me	ethod: Low-fl	ow micropurge				
al depth	to water (v	w/o pump):			Water level i	indicator:					
al depth	to water (v	v/o pump): /			Water qualit	y meter:	YSI /				
suring	point: Nort	th side of casin	g		Pump depth	setting:			Pump type/m	odel:	
5 min	Δ < 10%	Δ < 10%	17 7		∆ < 0.1 pH		∆ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
ime -	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
											Woodpile - maccesible
											*
-											

Sheet	of
Date:	
Date:	nlia

Well ID:	Mw	-09	Sample ID:	Mw-	09	Sample Time	1000				
Casing dia	meter/type:	2			Well locati	on: Ace	Hardvar	a Lot		Weather:	Clear, Breeze 82°
Screened i	nterval(s):	20-	-35		Sampling	personnel:	W6178				
Total depth	n:	35			Sampling i	method: Low-flo	ow micropurge				
Initial depth	n to water (v	v/o pump):	24.33		Water leve	el indicator:	Heron				
Final depth	to water (w	v/o pump):	25.36		Water qua	lity meter:	YSI				
Measuring	point: Nort	th side of casir	ng		Pump dep	th setting:			Pump type/m	odel: 55	Monsoon
5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		∆ < 0.3 ft	< 1L/min	×	< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
0920	23.84	1.071	24.7	1.98	6.68	-13.1	29.71	200	120.0		
0925	23.68	1.065	18.0	1.52	6.51	10.6	25.18	300	106.4		
0930	23.64	1.098	14.4	1.21	6.53	10.3	\$245.23	250	124.0		
0935	23.86	1.096	11.6	0.97	6.56	8-2	25.29	300	125.0		
0940	24.04	1.048	10.0	0.83	6,99	-7.8	29.31	225	94.3		
0945	24.66	1.049	9.2	0.77	6.98	7.7	15 39	300	84.7		
0990	24.14	1-042	71	0:60	6.59	9.0	25.46	300			
0170	57117	1-1)74	1.1	UIBU	6.71	7.0	41.16	100	56.0		

1 1 /	Lat	
()	5 amTiv	

Ground Water Sampling Data Sheet + 1100 5/24/18 MNA Jones Road Ground Water Plume Superfund Site, Houston, Harris County, Texas Mw-20 Sample Time: Well ID: Sample ID: Casing diameter/type: Well location: Weather: 20-32.9 Screened interval(s): Sampling personnel: 29.63 Total depth: Sampling method: Low-flow micropurge Initial depth to water (w/o pump): Water level indicator: Itoron Final depth to water (w/o pump): Water quality meter: YSI Measuring point: North side of casing Pump depth setting: Pump type/model: Δ < 10% Δ < 10% 5 min Δ < 0.1 pH Δ < 0.3 ft < 1L/min < 0.5 L/min Parameter Stabilization Limits (3 consecutive readings) Conductivity Flow Rate Purge Temp DO DO ORP Water Level Turbidity Time (mS/cm) or pH (L/min) or **Additional Comments** Volume (%) (°C) (mg/L) (mV) (feet btoc) (NTU) (µS/cm) (mL/min) (L) or (mL) recover

Sourter

Sheet	of
Date:	

						Ground 1	Water Samp	ling Data S	Sheet		5/23/18
Well ID:	Mw	21	Sample ID:	Mr	-2/	Sample Time	0830] [
Casing dia	meter/type:	21	i.		Well loca	ion: Eite	Parking	lot		Weather:	Let, humid; Sun 90°
Screened i	nterval(s):				Sampling	personnel:	WG/18				
Total depth	1:	24.7	73		Sampling	method: Low-fle	ow micropurge)			
Initial depth	to water (w/o pump):	27.11		Water lev	el indicator:	Heron				
Final depth	to water (v	w/o pump):	27.50		Water qu	ality meter:	YSI				
Measuring	point: Nor	th side of casir	ng		Pump dep	oth setting:			Pump type/m	nodel: 55	Mongoon
5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		Δ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
0805	25.06	1.042	556	4.42	6.67	-41,6	29.68	300	02		well not rechirering
0810	25.34	1.017	21.5	1.75	6.61	-60.3	28.62	357	2716au		Pull num and bart
0 5/0				.,,	2101	00.7	70.02	770	Criozo		ion strange
				19	1						7 Journal
				15	1						
				11	ill						
										-	
							 				

1 1	^	1
1	bar	100
W	10	, -

Sheet	of
Date:	
5	127/18
7	144/10

Well ID:	My	- 22	Sample ID	Mw-2	2	Sample Time:	0945				
Casing dia	meter/type:	2"			Well location	n: 5,/e	Porhiby	lot		Weather:	Clear, Hot 900
Screened i	nterval(s):	48.	93		Sampling pe	ersonnel:	W6/1	B			7 77
Total depth	n:	55			Sampling m	ethod: Low-flo	w micropurge				
Initial depti	n to water (w/o pump):	46.04		Water level		Heren				
Final depth	to water (v	v/o pump):	47.00	5	Water qualit	ty meter:	YSI				
Measuring	point: Nor	th side of casir	ng		Pump depth	setting:			Pump type/m	odel:	
5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		Δ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
				D	1						
				1200	100						
				Dar							
											Y
	-										

W. Gamber

Sheet	of
Date:	
5/	21/18

Well ID	WH	-23	Sample ID:	Mw-2.	3	Sample Time					
Casing dia	meter/type:	2"			Well location	on: BFE	Rock Cla	b lank	y lot	Weather: PC	1 Hot 90 F W 1000 % Homed
Screened	interval(s):	48-	47		Sampling p	ersonnel: V	10 24	Th	e cont	Contry	5
Total dept	h:	55			Sampling r	nethod: Low-f	low micropurge			.1	
Initial dept	h to water (w/o pump):	45.30		Water leve	l indicator:	leva				
Final dept	n to water (v	v/o pump):	46.17	3	Water qua	lity meter:	YSI			-1)	
Measuring	point: Nor	th side of casir	ng		Pump dept	h setting:	50"		Pump type/m	odel: 55 h	Mega-Marson
5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		Δ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
1200	26.52	0.762	120.1	9.23	883	71.1	47.72	300	17.1		
1209	26.04	0.664	44.5	3.96	6.63	38.0	47.73	250	29.0		
1210	26.59	0.699	36.1	2.37	6.74	260	47.68	250	1170		
1215	27.46	0.670	18.5	1.45	6.78	14.4	47.44	200	131.0		
1220	27.79	0.682	11.4	0.89	6.18	-7.3	47.26	300	124.0		
1225	27.73	0.686	9.7	0.76	6.78	~15.8	47.25	300	95.0		
1230					-/-	110	(1.4)	, , ,	17.0		
1											
							-				
if											
			3*5								

	1 1	1	
Recorded By:	4	Comter	

Sheet	of
Date:	

						Ground V	Vater Samp	ling Data S	Sheet		5/12/18
Well ID:	Mu	-24	Sample ID:	Mw-	24	Sample Time:	0815				
Casing dia	meter/type:	2"			Well locati	on: Olielly	s Parkin	e Lot		Weather:	85° sun Humid
Screened i	interval(s):	48-	53		Sampling		WG/1	B			
Total depth	n:	55			Sampling i	method: Low-flo	w micropurge				
nitial deptl	h to water (v	w/o pump):	21.74		Water leve	el indicator:	Heron				
inal depth	n to water (v	v/o pump):	39.45		Water qua	lity meter:	YSI				
Measuring	The same of the sa	th side of casi	ng		Pump dep	th setting: 51	/		Pump type/m	odel: 5	3 Geojub
5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		Δ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
5745	24.96	0.526	160.6	12.97	7.19	- 34.4	23.49	329	27.8		Little to no
7790	24.96	0-585	32.5	2.62	7.07	-33.8	24.57	300	81.8		Vecharge
7799	25.15	0.591	16.6	1.36	7.04	-37.0	25.96	250	65.8		/
1800	29.22	0.996	12.2	1.00	7.03	-46.3	27.64	300	48.6		
0805	25.42	0.598	10.6	0.87	7.00	-48.6	28.74	300	36.8		
						V 30					
			-								
			_								

1	11	
6/	. Cull	

Sheet	of
Date:	
1	1211/10

						Ground V	Water Samp	ling Data S	Sheet		5/24/19
Well ID:	M	v-25	Sample ID	Mw	-25	Sample Time:	-				
Casing dia	meter/type:				Well location	on:	Lente	VI Apo	liance	Weather:	Clear, Hot 890
Screened i	interval(s):				Sampling p	personnel:	WG	173"			I
Total depth	n:		29.5	0	Sampling r	nethod: Low-flo	w micropurge	9			
Initial depti	h to water (w/o pump):	29.1	13	Water leve	el indicator:	Heran				
Final depth	to water (w/o pump):	29,0	15	Water qua	lity meter:	YSI				
Measuring	point: Nor	th side of casir	ng		Pump dept	th setting:			Pump type/m	odel:	
5 min	Δ < 10%	Δ < 10%			∆ < 0.1 pH		Δ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
							1	1			
						Ma	Zan	MP			
						100					
						9	1	()		1	
× × × ×						Triec	l to	beet	C 1		
						1 1 100		11	Coul	d not	
	1					get	any	Water	10	Surface	
						4		171			
										#	
						_					
											1
										4	

	TTT	-	a	AN	AD	TIN	TA	TO	TAK	DOD	TIT	A .	COL	KDDE	ATTA	TOT
Η.	1 1	101 100		Δ	\mathcal{L}	1 1 17	V	H	11/1	FOR	1/1	A	\ \ I	1		

R

_	
Samp	lers

Site ID:

Jones Rd

EA Project #: 1434270 B3
Client: EPA Region 6
Site: Jones Road Ground Water Plume Superfund Site,

Cypress, Harris County, Texas

Description: Vapor Intrusion Assessment Sampling

Location ID (Address): ASI - 101 Grocery Store - Back	Sample Type Analysis (Circle):
Probe Installation Date/Time:	✓Indoor Air TO-15
Slab Thickness: Probe Length: Helium Leak Check Date/Time: He% Shroud He% Tedlar Bag VOC Purge Shut in Check PSI drop in 1 minute: O CAN	□ Sub-Slab
Pressure recorded in Inches of Hg	Duplicate: ✓ Yes ☐ No
Summa Sample ID: 45T-101-06052018 Summa Canister ID: H3434 Initial Gauge Pressure: -30 Initial Reg. Pressure: -30+	Summa Sample ID: ASI-101-0VP-06052018 Summa Canister ID: 0169 Initial Gauge Pressure: 30 Initial Reg. Pressure: 29
Flow Control ID: 04081	Flow Control ID: 04069
Flow Control Rate (ml/min): 11.67 Canister Start Time/Date: 1110 6-5-18 Canister End Time/Date: 1924 6-5-18 Final Canister Pressure: -4	Flow Control Rate (ml/min): 11.67 Canister Start Time/Date: 1110

Comments/Observations:

FIELD	SAN	MPLING	FORM FOR	VIAS	SESSN	MENT

Samplers: JAS JTB	Site ID: Ines Rd	Cypress, Harris C	on 6 Ground Water Plume Superfund Site,
Location ID (Address): ASI - 102 6 roum Standard		r Air Slab Space Air oor Air e Soil Gas	Analysis (Circle): TO-15 TO-15 LL TO-15 SIM ASTM D1945 Fixed Gases
Pressure recorded in Inches of Hg Summa Sample ID: AST-102-04052018	Summa	Duplicate	□ Yes □ No
Summa Canister ID:	1 Initial Ga	auge Pressure:	Initial Reg. Pressure:
Flow Control Rate (ml/min): 11.47 Canister Start Time/Date: 1111 4-5 Canister End Time/Date: 1922 4-5 Final Canister Pressure: -3	Canister	Start Time/Date: End Time/Date:	n):
Comments/Observations:	gend up)	- at the	time at sayle time

FIELD	SAMPI	ING	FORM	FOR	VI.	ASSESSI	/FNT
LIELD	SHIVITL	DILL	LOUM	LOV	VII	A D D E D D I	VIENT

TAS J	mplers:	Site ID:	Pd	Cypress, Harris Cou	6 ound Water Plume Superfund Site,
Location ID (Address):	ength:		Sample Indoor	Гуре Air lab Space Air or Air Soil Gas	Analysis (Circle): TO-15 TO-15 LL TO-15 SIM ASTM D1945 Fixed Gases
Pressure recorded in Inches of H Summa Sample ID: A5I - 103 - 04 Summa Canister ID: A0132 Initial Gauge Pressure: -30 Initial Recorded	052018	- 29	Summa (Initial Ga	Duplicate Sample ID: Canister ID: uge Pressure:	Yes □ No
Flow Control ID: 04070 Flow Control Rate (ml/min): 11.47 Canister Start Time/Date: 1112 6-5-2018 Canister End Time/Date: 1927 6-5-2018 Final Canister Pressure: 4			Flow Cor Canister Canister	ntrol Rate (ml/min) Start Time/Date:_ End Time/Date:	
Comments/Observations:					

	~				100000	
FIELD	SAME	$_{\rm LING}$	FORM	FOR VI	ASSESSN	AFNT.

Samplers: Site II JHS JTB Jone	s Rd	Cypress, Harris Co	n 6 Ground Water Plume Superfund Site,
Probe Installation Date/Time: Slab Thickness: Probe Length: Helium Leak Check Date/Time: He% Shroud He% Tedlar Bag VOC Purge Shut in Check PSI drop in 1 minute:	Sample Ty Indoor A Sub-Sla Crawl Sp Outdoor Active S	ir b bace Air Air oil Gas	Analysis (Circle): TO-15 TO-15 LL TO-15 SIM ASTM D1945 Fixed Gases
Pressure recorded in Inches of Hg Summa Sample ID: \(\Delta \overline{15} - 104 - 06052018 \) Summa Canister ID: \(\Delta \overline{13} \overline{5} \) Initial Gauge Pressure: \(\frac{-30}{20} \) Flow Control ID: \(\Delta \overline{40} \overline{5} \) Flow Control Rate (ml/min): \(\frac{11.67}{20} \) Canister Start Time/Date: \(\frac{1926}{20} \overline{6} - 5 - 201 \overline{5} \) Final Canister Pressure: \(\frac{-4}{20} \overline{5} \overline{5} \) Comments/Observations:	Summa Ca Initial Gauq Flow Contr Flow Contr Canister S Canister E	anister ID: ge Pressure: rol ID: rol Rate (ml/mir tart Time/Date:_ nd Time/Date:_	Initial Reg. Pressure:

FIELD SAM	IPLING FORM	FOR VI	ASSESSN	IENT

Samplers: Site ID: AS JTB JON'S	EA Project #: 1434270 B3 Client: EPA Region 6 Site: Jones Road Ground Water Plume Superfund Site, Cypress, Harris County, Texas Description: Vapor Intrusion Assessment Sampling
Probe Installation Date/Time: Slab Thickness: Probe Length: Helium Leak Check Date/Time: He% Shroud He% Tedlar Bag VOC Purge Shut in Check PSI drop in 1 minute:	Sample Type Analysis (Circle): TO-15 Sub-Slab TO-15 LL TO-15 SIM Outdoor Air ASTM D1945 Fixed Gases Active Soil Gas Duplicate: Yes No
Summa Sample ID: $ASI-105-06052-018$ Summa Canister ID: $H.3444$ Initial Gauge Pressure: -30 Initial Reg. Pressure: -29.5 Flow Control ID: 04063 Flow Control Rate (ml/min): 11.07 M/min Canister Start Time/Date: 0903 $0.5-18$ Canister End Time/Date: 1739 $0.5-18$ Final Canister Pressure: -14	Summa Sample ID: Summa Canister ID: Initial Gauge Pressure: Initial Reg. Pressure: Flow Control ID: Flow Control Rate (ml/min): Canister Start Time/Date: Canister End Time/Date: Final Canister Pressure:

FIELD SAMPLING FOR	M FOR VI A	ASSESSMENT	
Samplers: Site ID JAS JTB Jones		Cypress, Harris C	on 6 Ground Water Plume Superfund Site,
Location ID (Address): ASI - 106 (Mekng)	Sample	Туре	Analysis (Circle):
Probe Installation Date/Time:	Indoo	or Air	TO-15
Slab Thickness:Probe Length:	☐ Sub-S	Slab	TO-15 LL
Helium Leak Check Date/Fime:	☐ Crawl	Space Air	TO-15 SIM
He% Shroud He% Tedlar Bag V O C Purge	☐ Outdo	oor Air	ASTM D1945 Fixed Gases
Shut in Check PSI drop in 1 minute:	☐ Active	e Soil Gas	
		Duplicate:	□ Yes □ No
Pressure recorded in Inches of Hg		Duplicate	
Summa Sample ID: <u>AST-106-06052018</u>	Summa	Sample ID:	
Summa Canister ID: H3440	Summa Canister ID:		
Initial Gauge Pressure: 30 Initial Reg. Pressure: -30	Initial Ga	auge Pressure:	Initial Reg. Pressure:
Flow Control ID: 04073	Flow Co	ntrol ID:	
Flow Control Rate (ml/min): 11.67	Flow Co	ontrol Rate (ml/mi	n):
Canister Start Time/Date: 6858 4-5-18	Canister	r Start Time/Date:	
Canister End Time/Date: 1740 6-5-18	Canister	End Time/Date:_	
Final Canister Pressure:	Final Ca	inister Pressure:_	

				ASSESSN	

V		/	R
	A		

Samplers:

Site ID: Jones Rd

EA Project #: 1434270 B3
Client: EPA Region 6
Site: Jones Road Ground Water Plume Superfund Site,
Cypress, Harris County, Texas
Description: Vapor Intrusion Assessment Sampling

Location ID (Address): ASBK6-1 (Parking Lot-West)	Comple Type Analysis (Circle):			
Probe Installation Date/Time:	Sample Type Analysis (Circle): TO-15			
Slab Thickness:Probe Length:				
Helium Leak Check Date/Time:	☐ Sub-Slab TO-15 LL			
He% Shroud He% Tedlar Bag V O C Purge	☐ Crawl Space Air TO-15 SIM			
Shut in Check PSI drop in 1 minute:	Outdoor Air ASTM D1945 Fixed Gases			
	☐ Active Soil Gas			
	Duplicate: ☐ Yes ☐ No			
Pressure recorded in Inches of Hg	Duplicate			
Summa Sample ID: 45 8 kb - 1 - 06052018	Summa Sample ID:			
Summa Canister ID: 0282	Summa Canister ID:			
Initial Gauge Pressure: —30 Initial Reg. Pressure: —29	Initial Gauge Pressure: Initial Reg. Pressure:			
Flow Control ID: 04080	Flow Control ID:			
Flow Control Rate (ml/min):	Flow Control Rate (ml/min):			
Canister Start Time/Date: 11/3 6-5-2018	Canister Start Time/Date:			
Canister End Time/Date: 1932 6-5-2018	Canister End Time/Date:			
Final Canister Pressure:	Final Canister Pressure:			
Comments/Observations:				

TITT D	CALATOI	TATO	DODLIDO	D TTY A	CODOGS	ALL TIT
HIHIII		1111	HIND MALL		CHUCK	
	O A IVII I		FORM FO	IN VI	DODED	VILLINI

	Description: Vapor Intrusion Assessment Sampling			
Probe Installation Date/Time: EVM Kong Lot Slab Thickness: Probe Length: Helium Leak Check Date/Time: VO.C. Burge	Sample Type Indoor Air Sub-Slab Crawl Space Air Outdoor Air ASTM D1945 Fixed Gase Duplicate: Yes No			
Summa Canister ID:	Summa Sample ID: Summa Canister ID: Initial Gauge Pressure: Initial Reg. Pressure: Flow Control ID: Flow Control Rate (ml/min): Canister Start Time/Date: Canister End Time/Date: Final Canister Pressure:			

TITT	T	CA	ATTAT	DIA	TODI	1 DOD	TIT	ASSESSI	ATTA TIT
HIHI	1)	- /	NADI	111/	HINK	A HI IV	1/1	VCHIC	
1 1 1 2 1	, ,	MA	VIII	III		VI 1 () IX	VI	A 13131313131	VILLIVI

Samplers: Site ID:	S	Cypress, Harris C	on 6 Ground Water Plume Superfund Site,
Location ID (Address): Background - 1 (True - West) Probe Installation Date/Time:	Sample Ty □ Indoor A	1000	Analysis (Circle): TO-15
Slab Thickness:Probe Length:	☐ Sub-Slab	b	TO-15 LL
Helium Leak Check Date/Time:	☐ Crawl Sp	oace Air	TO-15 SIM
He% Shroud He% Tedlar Bag V O C Purge	Outdoor	Air	ASTM D1945 Fixed Gases
Shut in Check PSI drop in 1 minute:	☐ Active So	oil Gas	
		Duplicate:	☐ Yes ☑ No
Pressure recorded in Inches of Hg		Duplicate	9
Summa Sample ID: ASBK6-1-11062018	Summa Sa	mple ID:	
Summa Canister ID: H00289			
Initial Gauge Pressure: 30+ Initial Reg. Pressure: 30+			Initial Reg. Pressure:
Flow Control ID: 04063	Flow Contr	rol ID:	
Flow Control Rate (ml/min):	Flow Contr	rol Rate (ml/m	n):
Canister Start Time/Date: 6917 11-4-18	Canister St	tart Time/Date	<u> </u>
Canister End Time/Date: 1725 11-6-18	Canister Er	nd Time/Date:	
Final Canister Pressure:	Final Canis	ster Pressure:	
Comments/Observations: Wivel 5 5 All day			

FIELD SAMPLING FORM FOR VI ASSESSMENT

R Samplers: Site II	
Js JMb	Client: EPA Region 6 Site: Jones Road Ground Water Plume Superfund Site, Cypress, Harris County, Texas Description: Vapor Intrusion Assessment Sampling
Location ID (Address): Background (1194+ pole-Eas	Sample Type Analysis (Circle):
Probe Installation Date/Time:	□ Indoor Air TO-15
Slab Thickness:Probe Length:	☐ Sub-Slab TO-15 LL
Helium Leak Check Date/Time:	☐ Crawl Space Air TO-15 SIM
He% Shroud He% Tedlar Bag V O C Purge	☐ Outdoor Air ASTM D1945 Fixed Gases
Shut in Check PSI drop in 1 minute:	☐ Active Soil Gas
	Duplicate: ☐ Yes ☐ No
Pressure recorded in Inches of Hg	Duplicate
Summa Sample ID: ASBK6-2-11062018	Summa Sample ID:
Summa Canister ID: 0283	Summa Canister ID:
Initial Gauge Pressure: 1 Initial Reg. Pressure: 1 -30+	Initial Gauge Pressure: Initial Reg. Pressure:
Flow Control ID: 04073	Flow Control ID:
Flow Control Rate (ml/min):,	Flow Control Rate (ml/min):

Canister End Time/Date: 1845 | 11-6-18

Final Canister Pressure:

Canister Start Time/Date: 1045

Comments/Observations:

Canister Start Time/Date:_____

Canister End Time/Date:_____

Final Canister Pressure:

TIELD SAM	LING FORM FOR	VI ASSESSMENT
Samplers:	Site ID:	EA Project #: 1434270 B3 Client: EPA Region 6 Site: Jones Road Ground Water Plume Superfund Site Cypress, Harris County, Texas Description: Vapor Intrusion Assessment Sampling

Samplers: Site ID:	Client: EPA Regi Site: Jones Road Cypress, Harris C	ion 6 d Ground Water Plume Superfund Site,
Location ID (Address): Free Group (Back) Probe Installation Date/Time: Slab Thickness: Probe Length: Helium Leak Check Date/Time: He% Shroud He% Tedlar Bag VOC Purge Shut in Check PSI drop in 1 minute:	Sample Type Indoor Air Sub-Slab Crawl Space Air Outdoor Air Active Soil Gas Duplicate:	Analysis (Circle): TO-15 TO-15 LL TO-15 SIM ASTM D1945 Fixed Gases Yes □ No
Summa Sample ID: ASI - 101 - 11062018 Summa Canister ID: 0215 Initial Gauge Pressure: 30 Initial Reg. Pressure: -30 + Flow Control ID: 04081 Flow Control Rate (ml/min): Canister Start Time/Date: 1620 11 - 6 - 18 Canister End Time/Date: 1825 11 - 6 - 18 Final Canister Pressure: -3	Summa Canister ID:	ST - 0 - DUP - 11062018 O169

٦	TTTT	T	CYAT	ADT	TA	TODI	ATON	T 7T	ACCECCA	ATT N TIT
	HIHI	1 1	C A	V/IDI	11 2	41111	1/1 1/1 1/1	1/1	VICE	
Ц	1 11/1/	11	17/1	VIII		1.()[()	VIIIVIN	V 1	ASSESSN	

EA Project #: 1434270 B3 Client: EPA Region 6 Site: Jones Road Ground Water Plume Superfund Site, Cypress, Harris County, Texas Description: Vapor Intrusion Assessment Sampling			
Sample Type Analysis (Circle): TO-15 Sub-Slab TO-15 LL Crawl Space Air Outdoor Air ASTM D1945 Fixed Gases Duplicate: Yes No			
Duplicate Summa Sample ID: Summa Canister ID: Initial Gauge Pressure: Initial Reg. Pressure: Flow Control ID: Flow Control Rate (ml/min): Canister Start Time/Date: Canister End Time/Date: Final Canister Pressure:			

FIELD SAMPLING FORM FOR VI ASSESSMENT

Samplers: Site ID:	Client: EPA Region Site: Jones Road Cypress, Harris C	on 6 Ground Water Plume Superfund Site,
Probe Installation Date/Time: Slab Thickness: Probe Length: Helium Leak Check Date/Time: He% Shroud He% Tedlar Bag VOC Purge Shut in Check PSI drop in 1 minute:	Sample Type Indoor Air Sub-Slab Crawl Space Air Outdoor Air Active Soil Gas Duplicate:	Analysis (Circle): TO-15 TO-15 LL TO-15 SIM ASTM D1945 Fixed Gase
Pressure recorded in Inches of Hg Summa Sample ID: $ASD-103-11062018$ Summa Canister ID: 0182 Initial Gauge Pressure: $30+1$ Initial Reg. Pressure: $-30+1$ Flow Control ID: $0+061$ Flow Control Rate (ml/min):	Summa Canister ID: Initial Gauge Pressure: Flow Control ID: Flow Control Rate (ml/micon) Canister Start Time/Date Canister End Time/Date:	Initial Reg. Pressure:

٦		n	CIA	AIDT	TATO	TODA	TOD III	A	SSESSN	ALLALIT
1	HIHI		N A	MIPI	I N T	HURNA	HI IK VI	Δ	11111	

Samplers: JS/JTB	Site ID:	Cypress, Harris C	on 6 Ground Water Plume Superfund Site,		
Location ID (Address): Restront (Fr	nt) Sai	pple Type	Analysis (Circle):		
Probe Installation Date/Time:	/	ndoor Air	TO-15		
Slab Thickness:Probe Length:		Sub-Slab	TO-15 LL		
Helium Leak Check Date/Time:		Crawl Space Air	TO-15 SIM		
He% Shroud He% Tedlar Bag V O C Purg	ge п <i>с</i>	Outdoor Air	ASTM D1945 Fixed Gases		
Shut in Check PSI drop in 1 minute:		active Soil Gas			
		Duplicate:	☐ Yes ☑ No		
Pressure recorded in Inches of Hg		Duplicate	е		
Summa Sample ID: ASI-104 - 1106	2018 Sun	Summa Sample ID:			
Summa Canister ID: H3444	Sur	Summa Canister ID:			
Initial Gauge Pressure: - Initial Reg. Pressure	re: <u>-29.5</u> Init	al Gauge Pressure:_	Initial Reg. Pressure:		
Flow Control ID: 04677	Flor	w Control ID:			
Flow Control Rate (ml/min):	Flo	w Control Rate (ml/mi	in):		
Canister Start Time/Date: 1038 11+0	0-2018 Car	nister Start Time/Date	:		
	-2018 Car	nister End Time/Date:			
Final Canister Pressure:					
Comments/Observations: # Under Construction - # Manometer Reading - 0	use of PV		ed aroud carrister		
ACCON					

FIELD SAMPLING FORM FOR VI ASSESSMENT

Samplers: Site ID:	EA Project #: 1434270 B3 Client: EPA Region 6 Site: Jones Road Ground Water Plume Superfund Site, Cypress, Harris County, Texas Description: Vapor Intrusion Assessment Sampling
Probe Installation Date/Time:	Sample Type
Summa Sample ID: AST - 105 - 11062018 Summa Canister ID: H3429 Initial Gauge Pressure: H3419 Flow Control ID: 04080 Flow Control Rate (ml/min): Canister Start Time/Date: 0935 11 - 4 - 2018 Canister End Time/Date: 1732 11 - 4 - 2018 Final Canister Pressure: -4.5 Comments/Observations:	Summa Sample ID: Summa Canister ID: Initial Gauge Pressure: Initial Reg. Pressure: Flow Control ID: Flow Control Rate (ml/min): Canister Start Time/Date: Canister End Time/Date: Final Canister Pressure:

FIELL	CAMP	LING	FORM	I FOR	T/T A	SSESSME	TIM
FIELL	JOANIE	LINU	FUKIV	ITUK	VIP	POOLOOIMIE	LIVI

Samplers: Site	e ID:	Cypress, Harris C	on 6 Ground Water Plume Superfund Site,
Probe Installation Date/Time: Slab Thickness: Helium Leak Check Date/Time: He% Shroud He% Tedlar Bag VOC Purge Shut in Check PSI drop in 1 minute:	_	-Slab wl Space Air door Air we Soil Gas	Analysis (Circle): TO-15 TO-15 LL TO-15 SIM ASTM D1945 Fixed Gases
Pressure recorded in Inches of Hg Summa Sample ID: $ASI - 106 - 11062018$ Summa Canister ID: $H3427$ Initial Gauge Pressure: $30+$ Initial Reg. Pressure: 35 Flow Control ID: 04678 Flow Control Rate (ml/min): Canister Start Time/Date: $8927 + 11-6-2018$ Canister End Time/Date: $1730 + 11-6-2018$ Final Canister Pressure: -4.5	Summa Initial C Flow C Flow C Caniste Caniste	a Canister ID: Gauge Pressure:_ Control ID: Control Rate (ml/mi er Start Time/Date	Initial Reg. Pressure:
Comments/Observations: Manaputa Revoling: .009 in AC (on)	H20		

Sheet	of
Date:	
	11/7/18

Well ID:	Mu	-01	Sample ID			Sample Time:	1040			І Г	
Casing dia	meter/type:	2"			Well locati		1	Palal 1	Markel	Weather:	Clouds 800
Screened i		2.	5-39		Sampling	personnel:	W6	109			
Total depth	1:	35			Sampling	method: Low-flo	w micropurge)			
Initial depth	itial depth to water (w/o pump): 21.35 Water level indicator: lteran										
Final depth			23.08		Water qua		YSI	•			
Measuring		th side of casir	ng		Pump dep	th setting: 2	8.9		Pump type/m	odel: Mons	5001
5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		Δ < 0.3 ft	* < 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	pН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
1018	24.42	1.537	102.8	7.79	6.68	-125.5	21.96	400	13.3		
1021	25.16	1.560	10.3	0.82	6.63	-134.6	21.50	200	11.6		
1024	29.70	1.579	5.5	0.49	6-61	-135.5	21.42	280	11.0		
1027	25.63	1.976	4.0	0.32	6.61	-132.4	22.10	280	10.40		
1030	25,54	1.570	3.7	0.30	6.61	-135.3	22.20	280	9.63		
1033	25.46	1.566	3.2	0.26	6,60	-136.9	22.35	300	7-63		
1036	25.45	1.563	2.8	0.23	6.60	-139.0		300	7.55		
									, , , , ,		
								2			
								-			

1	1		
4	5		
O.			

Recorded By:_

Sheet	of
Date:	1
11	17/18

Well ID:	M	v-02	Sample ID):		Sample Tim	e: 0945				
Casing dia	meter/type:	2	11		Well location	on:	Jones	ld		Weather:	Cloudy 80°
Screened	interval(s):		1.5-35		Sampling p	ersonnel:	461	09			
Total depti	h:	35	100		Sampling r	nethod: Low-f	low micropurge)			
Initial dept	h to water (v		8,20		Water leve	l indicator:	Iteron				
Final depth	n to water (v	v/o pump): 🗦	0.12		Water qua		YSI				
Measuring		th side of casir	ng		Pump dept	h setting:	26.9		Pump type/m		novin
5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		Δ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
0728	23.77	1.559	63.1	5.14	7.01	18.5	19.1	200	15.8		
0931	23.10	1,559	13.3	1.11	6.89	8.3	19,21	240	31.6		
0933	23.49	1.570	6.5	0.54	6.87	3.9	19.30	200	29.1		
0936	23 94	1.566	5.0	0.42	1.85	-1.6	19,41	240	23.3		
0939	23.59	1.561	4.6	1.39	6.85	-7.6	19.51	300	19.9		
1942	23.64	1.551	4.2	0.35	6.84	-13.6	19.50	300	19.9		
Union	- 7,10,1	1.771		0.77	0.01	17.0	11170	200	1 (1)		
							-				
										· _ = 1	

	1 P	
Recorded By:	WO	

Sheet	of
Date:	
11	16/18

Well ID:	M	w-03	Sample ID:			Sample Time	1310			Г	
	meter/type:	7	11		Well location	,)	hind	Mehons	,	Weather:	Clouds 80°
	nterval(s):		1.5 - 35		Sampling p		46/1	99			
Total depti			35			nethod: Low-fle	ow micropurge				
Initial dept	n to water (w/o pump):	16.43		Water leve	l indicator:	Heron				
Final depth	to water (v	v/o pump):	16.64		Water qua		YSI				
Measuring		th side of casir	ng		Pump dept	h setting: 2	6.5		Pump type/m		nipen
5 min	Δ < 10%	Δ < 10%			∆ < 0.1 pH		Δ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
1248	21.96	0.982	40.7	3.43	7.08	- 85.6	16.78	300	3193 au		
1251	22.13	0.945	8.6	0.74	6.83	- 82.7	16.78	300	1558 av		
1254	22.50	0.937	6.3	0.54	6.72	-63.7	16.78	300	782		
1257	22.43	0.931	6.4	0.55	6.68	-97.5	16.79	300	600		
1300	42.15	0.918	6.7	0.58	6.67	-51.4	16.78	200	80		
1303	22.44	0.918	7.0	0.60	6.64	-46.1	16.78	300	38		
7											
1											
							.V			В	
-											
				1							

	i / /	
Recorded By:	04.0	

Sheet_	of
Date:	
	11/6/18

Well ID:	M.	v-04	Sample ID:			Sample Time	1400				
Casing dia	meter/type:	2"			Well locati	on:	Be	hind 1	Nelong	Weather:	Cloudy 800
Screened i	nterval(s):	2-35			Sampling p	personnel:	W6/	DT			
Total depth	1:	3	9		Sampling r	method: Low-flo	ow micropurge				
Initial depti	n to water (v	v/o pump):	15.66		Water leve	I indicator:	Heron			1	
Final depth	to water (v	v/o pump):	15.63	ź	Water qua	lity meter:	YSI				
Measuring	point: Nor	h side of casi	ng		Pump dept	th setting:	9.0		Pump type/m	odel: /	lousoon
5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		Δ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
1343	21.51	2.417	111.6	9.15	6.77	-128.3	1,	300	29.3		WLM 2550es
1346	21.20	2.404	11.0	0.95	6.73	-159.1		200	27.5		
1349	21.43	2.419	3.8	0.32	6.70	-160.6	17.87	300	19.3		
1352	21.70	2.434	2.7	0.23	6.68	-162.9	17.87	300	18.1		
1355	2187	7 446	2.3	0.20	6.68	-1157	17.89	320	18.0		
1354	21.66	2.436	2.2	0.19	6.68	-107/	17.80	280	17.3		
1110	(1100	2.170	6.6	0.11	000	- 102.1	11.00	200	110/		
							-		-		
										*	
					1						
							1				

	. 15	
Recorded By:	Wb	

Sheet	of
Date:	
	11/5/18

Well ID:	Mw	-05	Sample ID:	Mw.	05	Sample Time	1600	f			
Casing dia	meter/type:				Well locat	on:	Del	hind A	ledond	Weather:	80° douds
Screened	interval(s):	2-3	5		Sampling	personnel:	461	04	/		
Total dept	h:	39			Sampling	method: Low-fl	ow micropurge				
Initial dept	h to water (v	w/o pump):	6.20		Water leve	el indicator:	Heron				
Final depti	h to water (w	v/o pump):	6.36		Water qua	lity meter:	YSI				
Measuring	point: Nort	th side of casi	ng		Pump dep	th setting:	28.0		Pump type/m	odel: Mar	15000
5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		Δ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
1540	21.96	1.106	144.1	10.49	6.76	-18.9	16.44	350			
1943	21.58	1.090	27.4	2.37	6.65	.15.4	16.93	300			
1946	21.57	1.080	29.8	2.25	6.59	-12.6	16.55	300			
1549	21.55	1,071	22.1	1.94	6.56	~ 12.6	11.18	300			
1592	71.59	1.069	21.1	1.85	6.54	-10.8	16.60	300			
1495	7163	1.058	20.7	1.82	6,53	-9.8	16.60	300			
111	51.07	1.070	50.1	1,04	0.77	(10	18.00	700			
						7					
						4					

	1	
Recorded By:	W.6	

Sheet _	of
Date: _	1/1200
/	1/6/18

Well ID:	M	u 06	Sample ID:			Sample Time	1045] [
Casing dia	meter/type:	211			Well location					Weather:	80° Osercast
Screened	nterval(s):	2-3	9		Sampling pe	ersonnel: 4	16/09				
Total depti		35					low micropurge				-
	n to water (30-71		Water level		Heron				
Final depth	to water (v	v/o pump):	34.8	14	Water qualit	y meter:	YSI				
Measuring	point: Nor	th side of casin	g		Pump depth	setting:			Pump type/m	nodel:	
5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		Δ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
											Bailer
								1			

Recorded By:

Sheet _	of
Date:	
	11/0/10

Well ID:	Mw	-07	Sample ID	:		Sample Time					
Casing dia	meter/type:	2"			Well location	n: 7,10	slop &	2- Lot		Weather: /	Couly 800
Screened i		7	0-35		Sampling pe	ersonnel:	16/19				7
Total depth		39					ow micropurge				
		w/o pump):	26.2	9	Water level		ltevan				
Final depth	to water (v	v/o pump):	26.	51	Water qualit	y meter:	YSI				
Measuring	point: Nor	th side of casin	g		Pump depth	setting:			Pump type/m	odel:	
5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		Δ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
										1	
											.)
											1301
											Our
					- 1						
-											

Recorded By:

Jones Rd Ground Water Plume Superfund Site Harris County, Texas

Recorded By:_

Low-Flow Ground Water Sampling Data Sheet

Sheet	of
Date:	
	11/5/18

Well ID:	M	w-08	Sample ID			Sample Time	e:				
Casing dia	meter/type:				Well locatio	n:				Weather:	
Screened	interval(s):		1		Sampling p	ersonnel:					
Total depti	n:				Sampling m	ethod:					
Initial dept	h to water (w/o pump): /			Water level	indicator:		/			
Final depth	n to water (v	w/o pump);/			Water quali	ty meter:	YSI				
Measuring		th side of casin	ng		Pump depth	setting:			Pump type/m	odel:	
	Δ < 1° C			Δ <10%	Δ < 0.1 pH	Δ < 10 mV	Δ < 0.3 ft	< 1L/min	Δ < 10 NTU		Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
											Well is not
											accepible has been
											covered by properly
											owner
									36		
				1							

Sheet	of
Date: _	
	11/5/18

Well ID:	Mw	1-09	Sample ID			Sample Time	1435					
Casing dia	meter/type:	2'			Well locati	on:	Ace	Lot		Weather:	Humid	800
Screened i	interval(s):	2	0-35		Sampling	personnel:	WE	109				
Total depth	ո:		35		Sampling i	method: Low-fl	ow micropurge					
Initial depti	n to water (v	v/o pump):	20.70		Water leve	el indicator:	Heron					
Final depth	n to water (w	v/o pump):	20.90		Water qua	lity meter:	YSI					
Measuring	point: Nort	h side of casi	ng		Pump dep	th setting:	28		Pump type/m	odel:	59 Mong	oon
5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		Δ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabili	zation Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Ad	ditional Comments
1415	22.19	1.287	84.3	6.17	6.73	-59.8	21.30	350	/			
1418	22.09	1.283	11.7	0.99	6.62	-83.7	21.32	350	/,			
1421	12.37	1.285	5.7	0.49	6.51	- 86.5	21.00	200	/			
1424	22.47	1.261	4.3	0.37	6.47	-86.4	21.13	200	1			
1427	22.80	1.259	39	0.34	6.46	-86.4	21.00	200	/			
1430	13,57	1.235	3.4	0.29	6.45	-97.7	21.10	200				

	1 (
Recorded By:	213	

Sheet _	of
Date:	, ,
	1/6/18

Well ID:	Mw	- 30	Sample ID:			Sample Time] [
Casing dia	meter/type:				Well locatio	n: P-	Lot.			Weather:	
Screened i	nterval(s):	20-	32.5		Sampling po		W610	9			
Total depth	1:	29.63			Sampling m	ethod: Low-flo	w micropurge				
Initial deptl	n to water (w/o pump):	24.83	we	Water level		Heron				
Final depth	to water (v	v/o pump):	22.98	24.95	Water quali	ty meter:	YSI				
Measuring	point: Nor	th side of casin	ng		Pump depth	n setting:	/		Pump type/m	nodel:	
5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		Δ < 0.3 ft	< 1∐min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
											5
											Doort
											- 4/(
									-		

Recorded By:____

Sheet _	of
Date: _	2
	11/7/18

Well ID:	1	y-21	Sample ID:			Sample Tim	e: 0845			[
Casing dia	meter/type:	2'			Well location	on:	Cartendi			Weather:	Cloudy 85°
Screened i	nterval(s):	3	0-30		Sampling p	personnel:	WEI	109			1
Total depth	1:	29	1.73		Sampling r	method: Low-f	flow micropurge				
Initial depth	n to water (v	v/o pump):	27.62		Water leve	l indicator:	Heron				
Final depth	to water (w	//o pump):	23.80		Water qua	lity meter:	YSI				
Measuring	point: Nort	th side of casi	ng		Pump dept	h setting:	25		Pump type/m	odel: Mo	n 500 1
5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		Δ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
0825	23.88	1.062	62.6	5.07	6.98	-9.3	23.95	220	41.0		
7828	24.01	1.064	15.8	1.30	6.75	-9.4	24.00	380	45.0		
0831	74.43	1.078	4.6	0.38	6.68	-14.7	23.80	200	63.3		
1934	24.88	1.099	3.6	0.29	6.67	-264	23.98	240	33.5		- X-
0837	24.76	1.107	2.5	0,20	6.65	-48.4	23.95	220	220W	7 21.6	
M840	247/	1.111	2.2	0.18	6.69	-92.6	2397	770		1 2	
COID	21.10	CIII	9.7.5	0.10	0.07	14.0	11.11	440			
							1				
										-	
-											
									4		
		<u> </u>									
	-										

	1				
ú	6				
	ú	.6	.6	.6	. 6

Recorded By:_

Sheet	of
Date:	

Well ID:	My	1-2a	Sample ID:			Sample Time	1000] [1
Casing dia	meter/type:	2	11		Well location	n:	. 17 1-			Weather: (loudy 800
Screened	interval(s):		48-93		Sampling pe	ersonnel:	46/0				
Total depti	n:	9	59		Sampling me	ethod: Low-fl	ow micropurge				
Initial dept	h to water (w/o pump):	45.84		Water level	indicator:	Heron				
Final depth	to water (v	v/o pump):	46.24		Water qualit	y meter:	YSI				
Measuring	point: Nor	th side of casin	ng		Pump depth	setting:			Pump type/m	nodel:	
5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		Δ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
		-									
											3
											12.
											06/(
	X	-			7 1						

Sheet	of
Date:	
	11/5/18

Well ID:	Mw.	. 23	Sample ID:	Mw.	25	Sample Time	1240				
Casing dia	meter/type:				Well location	on: BFE	Club			Weather:	Cloudy 75°
Screened i	nterval(s):	4	8-93		Sampling p	personnel:	W6/	09			
Total depth	n:	55			Sampling r	method: Low-flo	ow micropurge				
Initial depth	n to water (v	w/o pump):	44.89		Water leve	el indicator:	teron				
Final depth	to water (v	v/o pump): 🕡	34.7	44.75	Water qua		YSI				
Measuring	point: Nor	th side of casir	ng		Pump dept	th setting:	50'		Pump type/m		1500 n
5 min	Δ < 10%	Δ < 10%			Δ < 0.1 pH		∆ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
1210	23.85	0.795	41.1	3.32	6.65	-32,5	44.89	290	/,		Turbidity meters
1215	23.82	0.783	14.4	1.21	6.79	-35.5	46.23	250	/,		didn't come all
1218	24.18	0.791	12.5	1.03	6.82	-37.8	46.10	300	/		Vial
1221	24.72	0.804	10.6	0.88	6.86	-42.0	46.02	250			
1224	29.20	0.815	9.6	0.78	6.90	-47.5	45.70	300	/		
227	49.20	0.820	8,5	0.69	6.91	-48.5	45.87	300			
1230	24.80	0,817	8.3	0.69	6,91	-91.9	49,94	350	/		
233	24.81	0.817	7.8	17.64	6.91	-54.5		350	/		
.,,	1-21	0.017	7 - 0	0.01		707	1010	- 10			
								·			
											

Recorded By:	W ·	

Sheet	of
Date:	
111	1/1/18

Well ID:	My	- 24	Sample ID:	Mw-	24	Sample Time	0910			[
Casing dia	meter/type:		-		Well location	on:	0.	rielly	tulo	Weather:	Scattered Clouds 80°
Screened i	nterval(s):		48-53		Sampling p	personnel:	W	5 109			
Total depth	1:	55			Sampling r	nethod: Low-fl	ow micropurge				
Initial depti	n to water (v	v/o pump):	1793		Water leve	I indicator:	Heron				
Final depth	to water (w	v/o pump):	18.68		Water qua	lity meter:	YSI				
Measuring	point: Nort	th side of casi	ng		Pump dept	h setting:	51		Pump type/m	odel: 55 M	onsoan
5 min	Δ < 10%	Δ < 10%			∆ < 0.1 pH		Δ < 0.3 ft	< 1L/min		< 0.5 L/min	Parameter Stabilization Limits (3 consecutive readings)
Time	Temp (°C)	Conductivity (mS/cm) or (µS/cm)	DO (%)	DO (mg/L)	рН	ORP (mV)	Water Level (feet btoc)	Flow Rate (L/min) or (mL/min)	Turbidity (NTU)	Purge Volume (L) or (mL)	Additional Comments
0850	23.68	0.681	40.7	3.31	7.24	-65.4	19.19	300	10.39		
0853	23.98	0.695	12.8	1.06	7.13	-74.7	19.68	200	15.7		
2856	24.36	0.701	7.4	0.61	7.10	-81.9	20.69	300	10.63		
0859	24.90	0.704	6.1	0.50	7.09	-84.3	20.89	300	10.87		
0902	24.46	0.704	5.0	0.47	7.09	-88.6	20.84	200	9.88		
0905	24.63	0.706	4.6	0.38	7.09	-91.3	20.86	200	11.01		
					7.0						
						*					
				1							

	11	
1.	16	
V	U	

Recorded By:_

Attachment 2

Field Notes

Location Heuston, Harris Co. TX Date 4-4-18 Project/Client John Rd 6W Home LPAley a Tower Oaks Road Repairy ("EMT-OH) 1130 - Vianna Johnson with Tyrner Paving and Constructor called to work Stating on Friday April a, 2018 on Tions Oaks. Ms. Johnson invotal me to garmiety @ 10 am in 4-6e-18 at the From P+ C others on Tom Oaks 178 4-4-18 6.2018 1000 - Meeth, with Turner Paring and Construen en Tome Oaks * Met won Scott Turner of Turm Parry and Constru Turm is gratary Town Oaks for 12-rang 4/6/18 - with 12-run on Friday 4/13/18 - Chit-04 will be bould over with 4-lin of Ashelt wow need to he todatal after re-pare

Location Flowston, Harris Co. TX Date 4-5-18 Project/Client Jones Ad by Ywwo EPA Royle Indon VI AN Samply 500 - Met (D Horston effice to ocal can star and except 0730 - molt to sto 0800 - Pertural shit of text on seperate Freld Sanglan From for VI Assessment, for each comist 1037 - Calthrate of PID 1043 - PID calphatel to 10 ppm South SE 10-15 mph Wuth - HotastETPC 1800 - Condita VI sandy arch duput sale for the office

Attachment 3

Photo Log

Photograph No. 1 (30 November 2015)

Photograph No. 2 (30 November 2015)

Description: Preparing to do low-flow sampling in MW-22

Photograph No.3 (1 December 2015)

Photograph No. 4 (2 December 2015)
Description: Water purge from MW-20

Photograph No. 5 (3 December 2015)

Description: Low flow purging and sampling MW-02

Photograph No. 1 (25 January 2016)

Description: EHC pre-mix

Photograph No. 2 (25 January 2016)

Description: Injection Tool

Photograph No.3 (25 January 2016)

Description: Nitrogen Tank and DHC Injection Set Up

Photograph No. 4 (26 January 2016)

Description: Driving Injection Rods at Point 63

Photograph No. 5 (26 January 2016)

Photograph No. 6 (26 January 2016) Description: Pumping EHC

Photograph No. 7 (26 January 2016)

Description: Checking DO and ORP levels prior to injection.

Photograph No. 8 (27 January 2016)

Description: Injection rod during injection.

April 2019

Photograph No. 9 (29 January 2016) Description: Concrete repair bore hole

Photograph No. 10 (29 January 2016) Description: Daylighting from IW-3

Photograph No. 11 (30 January 2016)
Description: Setting up safety devices.

Photograph No. 12 (1 February 2016)
Description: Staging drums for removal.

Photograph No. 1 (18 April 2016)

Description: MW-02

Photograph No. 2 (18 April 2016)

Description: MW-03

Photograph No.3 (18 April 2016) Description: MW-08 hidden under 8 inches of soil

Photograph No. 4 (18 April 2016)

Description: MW-20

Photograph No. 1(22 September 2016)

Description: MW-20

Photograph No. 2 (22 September 2016)

Description: MW-09

Photograph No. 1 (23 February 2017) Description: Purging MW-01

Photograph No. 2 (22 February 2017)

Description: Preparing to gauge MW-03

Photograph No.3 (21 February 2017)

Description: Setting up on MW-08 for low flow

Photograph No. 4 (21 February 2017)

Description: Location MW-20

Photograph No. 1 (13 September 2017)

Photograph No. 2 (13 September 2017) Description: Location MW-20

Photograph No. 1 (27 March 2018)
Description: EHC pre-mix

Photograph No. 2 (27 March 2018) Description: EHC mixing area

Photograph No. 3 (27 March 2018)

Photograph No. 4 (28 March 2018) Description: EHC staging area

Photograph No. 5 (28 March 2018) Description: Injection point plugging

Photo Log

Photograph No. 01 (12 September 2017) September 2017- Groundwater Sampling Event Sampling MW-23

Photograph No. 02 (12 September 2017) September 2017- Groundwater Sampling Event Sampling MW-20

Photograph No. 03 (13 September 2017) September 2017- Groundwater Sampling Event Sampling MW-08

Photograph No. 04 (June 2018) June 2018 – Vapor Intrusion (VI) Sampling Event VI Summa canister for ambient air

Photograph No. 05 (June 2018) June 2018 – VI Sampling Event VI Summa canisters in the far left corner

Photograph No. 06 (June 2018) June 2018 - VI Sampling Event VI Summa canisters on a restaurant table

Photograph No. 07 (November 2018) November 2018 – VI Sampling Event VI Summa canister on a countertop

Photograph No. 08 (November 2018) November 2018 – VI Sampling Event VI Summa canister in the restaurant kitchen

Photograph No. 09 (November 2018) November 2018 – VI Sampling Event VI Summa canister on restaurant table

Photograph No. 10 (May 2019) CMT-04 well repair

Photograph No. 11 (May 2019) CMT-04 well repair

Photograph No. 12 (May 2019) CMT-04 well repair

Photograph No. 13 (May 2019) Completion of well rehab in CMT-04

Attachment 4 Vapor Intrusion Data

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

Region 6 Laboratory

Environmental Services Branch 10625 Fallstone Road, Houston, TX 77099 Phone: (281)983-2100 Fax: (281)983-2248

Site Name	Jones Road Groundwater Plume
Sample Collection Date(s)	06/05/18
Contact	Raji Josiam (6SF-RA)
Report Date	07/18/18
Project #	18SF079
Work Order(s)	1806003

Analyses included in this report:

Air TO-15 (Vapor Instusion)

Report Narrative

Standard procedures for quality assurance and quality control were followed in the analysis and reporting of the sample results. The results apply only to the samples tested. This final report should only be reproduced in full.

The reporting limit (sometimes referred to as a quantitation limit) is defined as the lowest concentration at which an analyte can be reliably measured and reported without qualification. Reporting limits are adjusted for sample size, dilution, and matrix interference. Concentrations below the reporting limit are reported as non-detects or <RL.

For a list of ISO 17025 accredited methods go to: http://region6a.epa.gov/intranet/6md/lab/labisocertification2018.pdf

Report Approvals:	
Richard McMillin Region 6 Laboratory Technical Manager	David W. McQuiddy Region 6 Laboratory Branch Chief

STATES TATES TO STATES TO

Please provide a reason for holding:

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

Region 6 Environmental Services Branch Laboratory

10625 Fallstone Road Houston, Texas 77099

Sample Receipt and Disposal

Site Name: Jones Road Groundwater Plume	Project Number: 18SF079
Data Management Coordinator: Christy Warren	/ /
Data Management Coordinator Signature	Date
Date Transmitted:/	
Please have the U.S. EPA Project Manager/Officer call the Da comments or questions.	ta Management Coordinator at 3-2137 for any
Please sign and date this form below and return it with any con	mments to:
Christy Warren Data Management Coordinator Region 6 Laboratory 6MD-HS	
Received by and Date	
Comments:	
The laboratory routinely disposes of samples 90 days after all hold these samples in custody longer than 90 days, please sign	• •
Signature	Date

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Fax:(281)983-2248 Phone:(281)983-2100

ANALYTICAL REPORT FOR SAMPLES

Station ID	Laboratory ID	Sample Type	Date Collected	Date Received
ASBKG-1-06052018 (0282)	1806003-01	air	6/5/18 19:32	06/06/18 10:40
ASBKG-2-06052018 (0275)	1806003-02	air	6/5/18 16:32	06/06/18 10:40
ASI-101-06052018 (H3434)	1806003-03	air	6/5/18 19:24	06/06/18 10:40
ASI-101-DUP-06052018 (0169)	1806003-04	air	6/5/18 19:24	06/06/18 10:40
ASI-102-06052018 (0185)	1806003-05	air	6/5/18 19:22	06/06/18 10:40
ASI-103-06052018 (A0132)	1806003-06	air	6/5/18 19:27	06/06/18 10:40
ASI-104-06052018 (0135)	1806003-07	air	6/5/18 19:26	06/06/18 10:40
ASI-105-06052018 (H3444)	1806003-08	air	6/5/18 17:39	06/06/18 10:40
ASI-106-06052018 (H3440)	1806003-09	air	6/5/18 17:40	06/06/18 10:40

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Fax:(281)983-2248 Phone:(281)983-2100

QC SUMMARY REPORT

Air TO-15 (Vapor Instusion) B8F1905 air						
Samples: 9	ReExts: 0					
LAB NUMBER	SOURCE					
B8F1905-BLK1						
B8F1905-BLK2						
B8F1905-BS1						
B8F1905-BS2						
B8F1905-BSD1						
B8F1905-DUP1	1806003-05					

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Station ID: ASBKG-1-06052018 (0282) Lab ID: 1806003-01

Batch: B8F1905 Date Collected: 06/05/18 Initial Pressure: 19.74 psia Sample Type: air Sample Qualifiers:

Surrogates

Analyte	Result ppbv	Analyte Qualifiers	%Recovery	%Recovery Limits	Prepared	Analyzed
1,2-Dichloroethane-d4	10.9		108	70-130	06/12/18	06/19/18
Toluene-d8	10.1		100	70-130	"	"
4-Bromofluorobenzene	10.3		102	70-130	"	"

Targets

Analyte (CAS Number)	Re ppbv	esult μg/m³	Analyte Qualifiers		orting nit µg/m³	Dilution	Prepared	Analyzed
Vinyl chloride (75-01-4)	U	U		0.15	0.39	1.5	06/12/18	06/19/18
1,1-Dichloroethene (75-35-4)	U	U		0.15	0.60	"	"	"
trans-1,2-Dichloroethene (156-60-5)	U	U		0.15	0.60	"	"	"
cis-1,2-Dichloroethene (156-59-2)	U	U		0.15	0.60	"	"	"
Trichloroethene (79-01-6)	U	U		0.15	0.81	"	"	"
Tetrachloroethene (127-18-4)	U	U		0.15	1.02	"	"	"

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Lab ID: 1806003-02 Station ID: ASBKG-2-06052018 (0275)

Batch: B8F1905 Date Collected: 06/05/18 Initial Pressure: 19.74 psia Sample Type: air Sample Qualifiers:

Surrogates

Analyte	Result ppbv	Analyte Qualifiers	%Recovery	%Recovery Limits	Prepared	Analyzed
1,2-Dichloroethane-d4	10.9		108	70-130	06/12/18	06/19/18
Toluene-d8	10.2		101	70-130	"	**
4-Bromofluorobenzene	10.3		102	70-130	**	**

Targets

Analyte (CAS Number)	Re ppbv	esult μg/m³	Analyte Qualifiers		orting nit µg/m³	Dilution	Prepared	Analyzed
Vinyl chloride (75-01-4)	U	U		0.21	0.55	2.1	06/12/18	06/19/18
1,1-Dichloroethene (75-35-4)	U	U		0.21	0.85	"	"	"
trans-1,2-Dichloroethene (156-60-5)	0.28	1.10		0.21	0.85	"	"	"
cis-1,2-Dichloroethene (156-59-2)	U	U		0.21	0.85	"	"	"
Trichloroethene (79-01-6)	U	U		0.21	1.15	"	"	"
Tetrachloroethene (127-18-4)	U	U		0.21	1.45	"	"	"

Report Name: Project #: 18SF079

Page 4 of 20

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Station ID: ASI-101-06052018 (H3434) Lab ID: 1806003-03

Batch: B8F1905 Date Collected: 06/05/18 Initial Pressure: 19.74 psia Sample Type: air Sample Qualifiers:

Surrogates

Analyte	Result ppbv	Analyte Qualifiers	%Recovery	%Recovery Limits	Prepared	Analyzed
1,2-Dichloroethane-d4	11.0		110	70-130	06/12/18	06/19/18
Toluene-d8	10.2		102	70-130	"	"
4-Bromofluorobenzene	10.4		104	70-130	"	"

Targets

Analyte (CAS Number)	Re ppbv	esult μg/m³	Analyte Qualifiers		orting nit µg/m³	Dilution	Prepared	Analyzed
Vinyl chloride (75-01-4)	0.87	2.23		0.16	0.40	1.6	06/12/18	06/19/18
1,1-Dichloroethene (75-35-4)	U	U		0.16	0.62	"	"	"
trans-1,2-Dichloroethene (156-60-5)	U	U		0.16	0.62	"	"	"
cis-1,2-Dichloroethene (156-59-2)	1.32	5.26		0.16	0.62	"	"	"
Trichloroethene (79-01-6)	1.31	7.04		0.16	0.84	"	"	"
Tetrachloroethene (127-18-4)	16.2	110		0.16	1.06	"	"	"

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Station ID: ASI-101-DUP-06052018 (0169) Lab ID: 1806003-04

Batch: B8F1905 Date Collected: 06/05/18 Initial Pressure: 19.71 psia Sample Type: air Sample Qualifiers:

Surrogates

Analyte	Result ppbv	Analyte Qualifiers	%Recovery	%Recovery Limits	Prepared	Analyzed
1,2-Dichloroethane-d4	11.2		112	70-130	06/12/18	06/18/18
Toluene-d8	10.2		102	70-130	"	"
4-Bromofluorobenzene	10.5		105	70-130	"	"

Targets

Analyte (CAS Number)	Re ppbv	esult μg/m³	Analyte Qualifiers		orting nit µg/m³	Dilution	Prepared	Analyzed
Vinyl chloride (75-01-4)	0.94	2.40		0.16	0.40	1.6	06/12/18	06/18/18
1,1-Dichloroethene (75-35-4)	U	U		0.16	0.62	"	"	"
trans-1,2-Dichloroethene (156-60-5)	U	U		0.16	0.62	"	"	"
cis-1,2-Dichloroethene (156-59-2)	1.31	5.21		0.16	0.62	"	"	"
Trichloroethene (79-01-6)	1.28	6.89		0.16	0.84	"	"	"
Tetrachloroethene (127-18-4)	15.8	108		0.16	1.06	"	"	"

Report Name: Project #: 18SF079

Page 6 of 20

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Station ID: ASI-102-06052018 (0185) Lab ID: 1806003-05

Batch: B8F1905 Date Collected: 06/05/18 Initial Pressure: 19.71 psia Sample Type: air Sample Qualifiers:

Surrogates

Analyte	Result ppbv	Analyte Qualifiers	%Recovery	%Recovery Limits	Prepared	Analyzed
1,2-Dichloroethane-d4	11.1		110	70-130	06/12/18	06/18/18
Toluene-d8	10.2		101	70-130	"	"
4-Bromofluorobenzene	10.4		103	70-130	"	"

Targets

Analyte (CAS Number)	Result ppbv μg/m³		Analyte Qualifiers	Reporting Limit ppbv μg/m³		Dilution	Prepared	Analyzed
Vinyl chloride (75-01-4)	1.09	2.80		0.15	0.39	1.5	06/12/18	06/18/18
1,1-Dichloroethene (75-35-4)	U	U		0.15	0.61	"	"	"
trans-1,2-Dichloroethene (156-60-5)	U	U		0.15	0.61	"	"	"
cis-1,2-Dichloroethene (156-59-2)	1.25	4.96		0.15	0.61	"	"	"
Trichloroethene (79-01-6)	1.14	6.14		0.15	0.83	"	"	"
Tetrachloroethene (127-18-4)	13.3	90.3		0.15	1.05	"	"	"

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Lab ID: 1806003-06 Station ID: ASI-103-06052018 (A0132)

Batch: B8F1905 Date Collected: 06/05/18 Initial Pressure: 19.70 psia Sample Type: air Sample Qualifiers:

Surrogates

Analyte	Result ppbv	Analyte Qualifiers	%Recovery	%Recovery Limits	Prepared	Analyzed
1,2-Dichloroethane-d4	10.9		108	70-130	06/12/18	06/18/18
Toluene-d8	10.2		101	70-130	"	"
4-Bromofluorobenzene	10.5		104	70-130	"	"

Targets

Analyte (CAS Number)	Re ppbv	esult µg/m³	Analyte Qualifiers		orting nit µg/m³	Dilution	Prepared	Analyzed
Vinyl chloride (75-01-4)	0.71	1.83		0.16	0.40	1.6	06/12/18	06/18/18
1,1-Dichloroethene (75-35-4)	U	U		0.16	0.62	"	"	"
trans-1,2-Dichloroethene (156-60-5)	U	U		0.16	0.62	"	"	"
cis-1,2-Dichloroethene (156-59-2)	1.18	4.69		0.16	0.62	"	"	"
Trichloroethene (79-01-6)	1.23	6.61		0.16	0.84	"	"	"
Tetrachloroethene (127-18-4)	16.0	109		0.16	1.06	"	"	"

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Station ID: ASI-104-06052018 (0135) Lab ID: 1806003-07

Batch: B8F1905 Date Collected: 06/05/18 Initial Pressure: 19.74 psia Sample Type: air Sample Qualifiers:

Surrogates

Analyte	Result ppbv	Analyte Qualifiers	%Recovery	%Recovery Limits	Prepared	Analyzed
1,2-Dichloroethane-d4	10.8		107	70-130	06/12/18	06/18/18
Toluene-d8	10.1		100	70-130	"	"
4-Bromofluorobenzene	10.4		103	70-130	"	"

Targets

Analyte (CAS Number)	Re ppbv	sult μg/m³	Analyte Qualifiers		orting nit µg/m³	Dilution	Prepared	Analyzed
Vinyl chloride (75-01-4)	0.69	1.77		0.15	0.38	1.5	06/12/18	06/18/18
1,1-Dichloroethene (75-35-4)	U	U		0.15	0.58	"	"	"
trans-1,2-Dichloroethene (156-60-5)	U	U		0.15	0.58	"	"	"
cis-1,2-Dichloroethene (156-59-2)	1.13	4.49		0.15	0.58	"	"	"
Trichloroethene (79-01-6)	1.07	5.77		0.15	0.79	"	"	"
Tetrachloroethene (127-18-4)	13.8	93.7		0.15	1.00	"	"	"

Report Name: Project #: 18SF079

Page 9 of 20

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Lab ID: 1806003-08 Station ID: ASI-105-06052018 (H3444)

Batch: B8F1905 Date Collected: 06/05/18 Initial Pressure: 19.75 psia Sample Type: air Sample Qualifiers:

Surrogates

Analyte	Result ppbv	Analyte Qualifiers	%Recovery	%Recovery Limits	Prepared	Analyzed
1,2-Dichloroethane-d4	10.9		108	70-130	06/12/18	06/18/18
Toluene-d8	10.2		100	70-130	"	"
4-Bromofluorobenzene	10.3		102	70-130	"	"

Targets

Analyte (CAS Number)	Re ppbv	sult μg/m³	Analyte Qualifiers		orting nit µg/m³	Dilution	Prepared	Analyzed
Vinyl chloride (75-01-4)	U	U		0.14	0.35	1.4	06/12/18	06/18/18
1,1-Dichloroethene (75-35-4)	U	U		0.14	0.55	"	"	"
trans-1,2-Dichloroethene (156-60-5)	U	U		0.14	0.55	"	"	"
cis-1,2-Dichloroethene (156-59-2)	U	U		0.14	0.55	"	"	"
Trichloroethene (79-01-6)	U	U		0.14	0.74	"	"	"
Tetrachloroethene (127-18-4)	1.20	8.14		0.14	0.94	"	"	"

Report Name: Project #: 18SF079

Page 10 of 20

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Station ID: ASI-106-06052018 (H3440) Lab ID: 1806003-09

Batch: B8F1905 Date Collected: 06/05/18 Initial Pressure: 19.75 psia Sample Type: air Sample Qualifiers:

Surrogates

Analyte	Result ppbv	Analyte Qualifiers	%Recovery	%Recovery Limits	Prepared	Analyzed
1,2-Dichloroethane-d4	10.8		108	70-130	06/12/18	06/19/18
Toluene-d8	10.2		102	70-130	"	"
4-Bromofluorobenzene	10.4		104	70-130	"	"

Targets

Analyte (CAS Number)	Re ppbv	esult µg/m³	Analyte Qualifiers		orting mit µg/m³	Dilution	Prepared	Analyzed
Vinyl chloride (75-01-4)	U	U		0.15	0.37	1.5	06/12/18	06/19/18
1,1-Dichloroethene (75-35-4)	U	U		0.15	0.58	"	"	"
trans-1,2-Dichloroethene (156-60-5)	U	U		0.15	0.58	"	"	"
cis-1,2-Dichloroethene (156-59-2)	U	U		0.15	0.58	"	"	"
Trichloroethene (79-01-6)	0.28	1.50		0.15	0.79	"	"	"
Tetrachloroethene (127-18-4)	2.78	18.9		0.15	0.99	"	"	"

Report Name: Project #: 18SF079

Page 11 of 20

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS - Quality Control

Batch: B8F1905 Sample Type: air

Blank (B8F1905-BLK1)

Prepared: 6/11/2018 Analyzed: 6/11/2018

Surrogates

ANALYTE	Result ppbv	Analyte Qualifier	Spike Level	%REC	%REC Limits
1,2-Dichloroethane-d4	10.5		10.0	105	70-130
Toluene-d8	9.92		10.0	99.2	70-130
4-Bromofluorobenzene	9.41		10.0	94.1	70-130

Targets

Result ppbv	Analyte Reporting Qualifiers Limit	
U	0.10	
	ppbv U U U U	ppbv Qualifiers Limit U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS - Quality Control

Batch: B8F1905 Sample Type: air

Blank (B8F1905-BLK2)

Prepared: 6/18/2018 Analyzed: 6/18/2018

Surrogates

ANALYTE	Result ppbv	Analyte Qualifier	Spike Level	%REC	%REC Limits
1,2-Dichloroethane-d4	11.2		10.0	112	70-130
Toluene-d8	10.0		10.0	100	70-130
4-Bromofluorobenzene	10.2		10.0	102	70-130

Targets

Result ppbv	Analyte Reporting Qualifiers Limit	
U	0.10	
	ppbv U U U U	ppbv Qualifiers Limit U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS - Quality Control

Batch: B8F1905 Sample Type: air

LCS (B8F1905-BS1)

Prepared: 6/11/2018 Analyzed: 6/11/2018

Surrogates

ANALYTE	Result ppbv	Analyte Qualifier	Spike Level	%REC	%REC Limits
1,2-Dichloroethane-d4	9.93		10.1	98.3	70-130
Toluene-d8	9.99		10.1	98.9	70-130
4-Bromofluorobenzene	10.2		10.1	101	70-130

Targets

ANALYTE	Result ppbv	Analyte Qualifiers	Reporting Limit	Spike Level	%REC %REC Limits
Vinyl chloride	10.0		0.10	10.5	95.7 70-130
1,1-Dichloroethene	9.41		0.10	10.0	94.1 70-130
trans-1,2-Dichloroethene	9.57		0.10	10.9	87.8 70-130
cis-1,2-Dichloroethene	9.94		0.10	10.2	97.5 70-130
Trichloroethene	10.4		0.10	10.8	96.0 70-130
Tetrachloroethene	10.1		0.10	10.6	95.4 70-130

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS - Quality Control

Batch: B8F1905 Sample Type: air

LCS (B8F1905-BS2)

Prepared: 6/18/2018 Analyzed: 6/18/2018

Surrogates

ANALYTE	Result ppbv	Analyte Qualifier	Spike Level	%REC	%REC Limits
1,2-Dichloroethane-d4	11.1		10.1	110	70-130
Toluene-d8	10.3		10.1	102	70-130
4-Bromofluorobenzene	11.0		10.1	109	70-130

Targets

ANALYTE	Result ppbv	Analyte Qualifiers	Reporting Limit	Spike Level	%REC %REC Limits
Vinyl chloride	9.76		0.10	10.5	93.0 70-130
1,1-Dichloroethene	8.38		0.10	10.0	83.8 70-130
trans-1,2-Dichloroethene	8.41		0.10	10.9	77.2 70-130
cis-1,2-Dichloroethene	8.70		0.10	10.2	85.3 70-130
Trichloroethene	8.92		0.10	10.8	82.6 70-130
Tetrachloroethene	8.63		0.10	10.6	81.4 70-130

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS - Quality Control

Batch: B8F1905 Sample Type: air

LCS Dup (B8F1905-BSD1)

Prepared: 6/11/2018 Analyzed: 6/11/2018

Surrogates

ANALYTE	Result ppbv	Analyte Qualifier	Spike Level	%REC	%REC Limits
1,2-Dichloroethane-d4	9.89		9.98	99.1	70-130
Toluene-d8	10.0		9.98	100	70-130
4-Bromofluorobenzene	10.2		9.98	102	70-130

Targets

ANALYTE	Result ppbv	Analyte Qualifiers	Reporting Limit	Spike Level	%REC	%REC Limits	RPD	RPD Limit
Vinyl chloride	10.1		0.10	10.5	96.5	70-130	0.79	25
1,1-Dichloroethene	9.44		0.10	10.0	94.4	70-130	0.32	25
trans-1,2-Dichloroethene	9.63		0.10	10.9	88.3	70-130	0.63	25
cis-1,2-Dichloroethene	10.0		0.10	10.2	98.2	70-130	0.80	25
Trichloroethene	10.4		0.10	10.8	96.5	70-130	0.48	25
Tetrachloroethene	10.2		0.10	10.6	95.9	70-130	0.59	25

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS - Quality Control

Batch: B8F1905 Sample Type: air

Duplicate (B8F1905-DUP1)

Prepared: 6/18/2018 Analyzed: 6/18/2018 Source: 1806003-05

Surrogates

ANALYTE	Result ppbv	Analyte Qualifier	Spike Level	%REC	%REC Limits
1,2-Dichloroethane-d4	11.2		10.0	112	70-130
Toluene-d8	10.2		10.0	102	70-130
4-Bromofluorobenzene	10.3		10.0	103	70-130

Targets

ANALYTE	Result ppbv	Analyte Reporting Spik Qualifiers Limit Leve		RPD	RPD Limit
Vinyl chloride	1.11	0.15	1.09	1.40	35
1,1-Dichloroethene	U	0.15			35
trans-1,2-Dichloroethene	U	0.15			35
cis-1,2-Dichloroethene	1.28	0.15	1.25	2.44	35
Trichloroethene	1.17	0.15	1.14	2.67	35
Tetrachloroethene	13.5	0.15	13.3	1.84	35

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

SURROGATE SUMMARY REPORT

Air TO-15 (Vapor Instusion)

air

LAB NUMBER	1,2-DCE-d4	TOL-d8	4-BFB
1806003-01	108	100	102
1806003-02	108	101	102
1806003-03	110	102	104
1806003-04	112	102	105
1806003-05	110	101	103
1806003-06	108	101	104
1806003-07	107	100	103
1806003-08	108	100	102
1806003-09	108	102	104
B8F1905-BLK1	105	99.2	94.1
B8F1905-BLK2	112	100	102
B8F1905-BS1	98.3	98.9	101
B8F1905-BS2	110	102	109
B8F1905-BSD1	99.1	100	102
B8F1905-DUP1	112	102	103

QC LIMITS

1,2-DCE-d4	=	1,2-Dichloroethane-d4	70 - 130
TOL-d8	=	Toluene-d8	70 - 130
4-BFB	=	4-Bromofluorobenzene	70 - 130

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Qualifiers

A This sample was extracted at a single acid pH.

HTS Sample was prepared and/or analyzed past recommended holding time. Concentrations should be

considered minimum values.

U The analyte was not detected at or above the reporting limit.

Abbreviations and Symbols

ABN Acid Base Neutrals (Semivolatile Compounds)

AES Atomic Emission Spectrometer

BS Blank Spike

CVAA Cold Vapor Atomic Absorption

DCB Decachlorobiphenyl

Electron Capture Detector ECD

GCGas Chromatograph

ICP Inductively Coupled Plasma

ISTD Internal Standard

LCS Laboratory Control Sample

MS Mass Spectrometer

MS/MSD Matrix Spike/Matrix Spike Duplicate

NA Not Applicable

NPD Nitrogen Phosphorous Detector

Not Reported NR

PCB Polychlorinatedbiphenyl

RL Reporting Limit

RT Retention Time

RPD Relative Percent Difference

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

TCLP Toxicity Characteristic Leaching Procedure

TCMX Tetrachloro-meta-xylene

VOA Volatile Organic Analysis

Out of QC limits

>LR The result was greater than the linear range.

Initial pressure in air analyses is the pressure at which the canister was received in psia (pounds *per* square inch absolute pressure).

The pH reported for Volatile liquid samples was tested using a 0-14 pH indicator strip for the purpose of verifying chemical preservation.

The statistical software used for the reporting of toxicity data is ToxCalc 5.0.32, Environmental Toxicity Data Analysis System 1994-2007 Tidepool Scientific Software.

Project #: 18SF079

Report Name:

₩age 1 of 1

CHAIN OF CUSTODY RECORD

No: 6-052418-140506-0051

Stop Sampler Start_

USEPA

DateShipped: 6/6/2018 CarrierName: Delivered by EA

Site #: TXN000605460 Contact Name: Pat Appel Contact Phone: 972-315-3922

Sample

Collected

Matrix

Analyses

Tag

Numb | Container

Cont

Preservative

Start

Lab: EPA Region 6 Laboratory Lab Phone: (281) 983-2137

Stop_

		rag	Allalysos			Time	Cont			Pressure	Pressure	,	Time	Time
ab#	Location ASBKG-1-06052018	0282	TO-15 SIM	Air	6/5/2018	19:32	1	6 L Canister	Keal Case	-30	-7	Jason	11:13: 00 AM	7:32:
	15BKG-1-06052						 	 		 		Stroup	UU AIVI	UPIV
					_ +				·	 -		<u></u>		<u> </u>
\ \							 	 	 	ļ			+	
						<u> </u>	 	-		 	· — · — · —	<u> </u>		
-						ļ. -	_	 	 -	 		 	-	
\								:		 			ļ	<u> </u>
\				<u>-</u>		<u> </u>				 		ļ	+	 —
ļ						 		 		┽				
				_ +	_ +		+		 	+	·	<u> </u>	 	
 			+			 			 	 			 	 -
 									-	· +	———		+	
 						 	 	 		 		· · · · · · · · · · · · · · · · · · ·		
<u> </u>				_ \		 	+ $-$	†	- 	 			 	
F						+	-			 - -				<u> </u>
<i>j</i>						+				-				
7							T			T - T				
+					+								<u> </u>	
													1	
									S	AMPLES TRA	NSFERRE	D FROM		
	Hons: Tag = C	anister ID							C	HAIN OF CUS	TODY#			
	Special Instructions: Tag = C Stop_Time = Sample Time													
	GOD THE													
	1	ished by (Si	gnature and Orga	nization)	Date/Time	Re	eceived by	(Signature and	Organization)	Date/Tim	e Sam	ple Condi	lion Upon	Recei
	Items/Reason Relinqu				6/6/2018		1 11	(Signature and		6/6/1	8			
	The state of the s	- F	4		163			with		10:4	70			
	- I	7-6-					<i>2</i>							
		-								 				
										 				
											ļ			
									~	-↓	<u>i</u> _			

Page 1 of 1

USEPA

DateShipped: 6/6/2018 CarrierName: Delivered by EA

CHAIN OF CUSTODY RECORD

Site #: TXN000605460 Contact Name: Pat Appel Contact Phone: 972-315-3922 No: 6-052418-140506-0052

Lab #	Location	Tag	Analyses	Matrix	Collected	Sample Time	Numb Cont	Container	Preservative	Start Pressure	Stop Pressure	Sampler	Start_ Time	Stop_ Time
	ASBKG-2-06052018	0275	TO-15 SIM	Air	6/5/2018	16:32	1	6 L Canister	Keal Case	-30		Jason Stroup	8:56:0 0 AM	4:32:0 0 PM
ļ	- 	<u> </u>							<u> </u>					
										<u> </u>				<u></u>
				<u> </u>				<u> </u>						
		<u> </u>		<u>. </u>	<u> </u>									
	-													
					:									
				 					<u> </u>			- 		
L. ,				<u> </u>			<u> </u>		 	<u> </u>	L			

	SAMPLES TRANSFERRED FROM
Special Instructions: Tag = Canister ID Stop_Time = Sample Time	CHAIN OF CUSTODY #
Stop_Time - Sample Time	

Items/Reason	Relinquished by (Signature and Organization)	Date/Time	Received by (Signature and Organization)	Date/Time	Sample Condition Upon Receipt
	Lin	6/6/18 0830	Self Sinh	6/6/18	
	70		~ n	10:40	

DateShipped: 6/6/2018 CarrierName: Delivered by EA

CHAIN OF CUSTODY RECORD

Site #: TXN000605460 Contact Name: Pat Appel Contact Phone: 972-315-3922 No: 6-052418-140507-0053

Location	Tag	Analyses	Matrix	Collected	Sample Time			Preservative	Start Pressure	Stop Pressure	Sampler	Time_	Stop_ Time
ASI-101-06052018	H3434	TO-15 SIM	Air	6/5/2018	19:24	1	6 L Canister	Keal Case	-30	-4	Jason Stroup	11:10: 00 AM	7:24:0 0 PM
	<u> </u>							-					
					 	<u> </u>				·			
ļ	!			ļ <u> </u>									<u> </u>
			-						· 		. —	 	-
											<u> </u>		
					<u> </u>	ļ.— —		ļ		<u>-</u>		<u> </u>	
		-		<u></u>	 	 	· 	<u> </u>					
			,			<u> </u>						<u> </u>	<u> </u>
1 1 1 1			· <u> </u>				<u></u>					<u> </u>	
			-	<u>:</u>		<u> </u>		<u> </u>		<u> </u>		 	<u> </u>
						Time	Time Cont	Time Cont	Time Cont	Time Cont Pressure	Time Cont Pressure Pressure	Time Cont Pressure Pressure	Time Cont Pressure Pressure Time ASI-101-06052018 H3434 TO-15 SIM Air 6/5/2018 19:24 1 6 Canister Keal Case -30 -4 Jason 11:10:

	SAMPLES TRANSFERRED FROM
Special Instructions: Tag = Canister ID	CHAIN OF CUSTODY #
Stop_Time = Sample Time	

Items/Reason	Relinquished by (Signature and Organization)	Date/Time	Received by (Signature and Organization)	Date/Time	Sample Condition Upon Receipt
	EA	6/6/18	Ast Kunch	6/6/18	
		OE'30	- The	10:40	
				-	
		 			

DateShipped: 6/6/2018 CarrierName: Delivered by EA

CHAIN OF CUSTODY RECORD

Site #: TXN000605460 Contact Name: Pat Appel Contact Phone: 972-315-3922 No: 6-052418-140507-0054

Lab#	Location	Tag	Analyses	Matrix	Collected	Sample Time	Numb Cont	Container	Preservative	Start Pressure	Stop Pressure	Sampler	Start_ Time	Time
	ASI-101-DUP- 06052018	0169	TO-15 SIM	Air	6/5/2018	19:24	1	6 L Canister	Keal Case	-30	-4	Jason Stroup	11:10: 00 AM	7:24:0 0 PM
-										<u> </u>		<u> </u>	<u> </u>	
ļ	 		-						<u> </u>					
										ļ. ——-		<u> </u>	<u> </u>	ļ
						 				 	<u> </u>	ļ ———		
				-		<u> </u>							 -	<u> </u>
 	ļ-··-		-	<u> </u>		<u> </u>				 				
							 			<u> </u>				†
										ļ _		<u> </u>		
			į.	 		<u> </u>			_	 	<u> </u>			<u> </u>
											-	Ī		<u> </u>
<u></u>								 		 			<u> </u>	
<u> </u>			-				 					<u> </u>	<u> </u>	<u> </u>

Special testsuctions: Tag - Conjeter ID	SAMPLES TRANSFERRED FROM CHAIN OF CUSTODY #
Stop_Time = Sample Time	CHAIN OF CUSTOD! #

Items/Reason	Reliqquished by (Signature and Organization)	Date/Time	Received by (Signature and Organization)	Date/Time	Sample Condition Upon Receipt
		6/6/18	1111	6/6/18	
	X ()	0830	AM mill	10:40	<u> </u>
				ļ	
				 	

DateShipped: 6/6/2018

CarrierName: Delivered by EA

Special Instructions: Tag = Canister ID

Stop_Time = Sample Time

CHAIN OF CUSTODY RECORD

Site #: TXN000605460 Contact Name: Pat Appel Contact Phone: 972-315-3922 No: 6-052418-140508-0055

SAMPLES TRANSFERRED FROM

CHAIN OF CUSTODY #

Lab#	Location	Tag	Analyses	Matrix	Collected	Sample Time	Numb Container Cont	Preservative	Start Pressure	Stop Pressure	Sampler	Start_ Time	Time
	ASI-102-06052018	0185	TO-15 SIM	Air	6/5/2018	19:22	1 6 L Canister	Keal Case	-30	-3	Jason Stroup	11:11: 00 AM	7:22:0 0 PM
													<u> </u>
										. ———— L ————	·		
			· :					-					
ļ				-		-							<u> </u>
<u></u>						 		 					
						ļ						· 	·
ļ—									<u> </u>				
	 					<u> </u>		 	<u> </u>				
		-	<u> </u>							,		-	<u> </u>
-						-				j			1
			.		<u></u>				T]	<u> </u>	<u> </u>

Items/Reason Relinquished by (Signature and Organization)	Date/Time	Received by (Signature and Organization)	Date/Time	Sample Condition Upon Receipt
	6/6/14		6/6/18	
To the	0830	follownt.	10:40	ļ
		110	•	
			 	

DateShipped: 6/6/2018

CarrierName: Delivered by EA

USEPA

CHAIN OF CUSTODY RECORD

Site #: TXN000605460 Contact Name: Pat Appel Contact Phone: 972-315-3922

Lab: EPA Region 6 Laboratory Lab Phone: (281) 983-2137

No: 6-052418-140508-0056

Lab#	Location	Tag	Analyses	Matrix	Collected	Sample Time	Numb Cont	Container	Preservative	Start Pressure		Sampler	Time	Stop_ Time
	ASI-103-06052018	A0132	TO-15 SIM	Air	6/5/2018	19:27	1	6 L Canister	Keal Case	-30	-4	Jason Stroup	11:12: 00 AM	7:27:0 0 P M
														<u></u>
 				-								 		<u> </u>
 												<u> </u>		<u></u>
														
				-								 	ļ	
				 										
			 			<u> </u>							<u> </u>	
				 			<u> </u>	<u> </u>	ļ		ļ — ———— ļ —————	<u> </u>	<u> </u>	<u> </u>
<u></u>			<u> </u>	. -	<u> </u>	 	 ;					<u> </u>		

Special Instructions: Tag = Canister ID	SAMPLES TRANSFERRED FROM
Stop_Time = Sample Time	CHAIN OF CUSTODY #
33.75	

items/Reason	Relinquished by (Signature and Organization)	Date/Time	Received by (Signature and Organization)	Date/Time	Sample Condition Upon Receipt
	X FA-	6/6/19	geff South	10:40	
ļ					

DateShipped: 6/6/2018

CarrierName: Delivered by EA

USEPA

CHAIN OF CUSTODY RECORD

Site #: TXN000605460 Contact Name: Pat Appel

Contact Phone: 972-315-3922

No: 6-052418-140510-0057

Lab#	Location	Tag	Analyses	Matrix	Collected	Sample Time	Cont	1	Preservative	Start Pressure	Stop Pressure	Sampler	Start_ Time	Stop_ Time
	ASI-104-06052018	0135	TO-15 SIM	Air	6/5/2018	19:26	1	6 L Canister	Keal Case	-30	-4	Jason Stroup	11:12: 00 AM	7:26:0
 				 		↓ ↓	- 		 	ļ		· · - —————		ļ
 				ļ										
 		<u> </u>		<u> </u>			 	 						
	<u> </u>							<u> </u>	<u> </u>				 	
				 		ļ	 							
						<u> </u>	 	f						
					<u> </u>			ļ						
<u> </u>	<u> </u>	<u> </u>		<u> </u>			}	<u> </u>	<u> </u>		<u>-</u>			

Special Instructions: Tag = Canister ID Stop_Time = Sample Time	CHAIN OF CUSTODY #	
Items/Reason Relinquished by (Signature and Organization)	Date/Time	Received by (Signature and Organization) Date/Time Sample Condition Upon Received

Items/Reason	Relinquished by (Signature and Organization)	Date/Time	Received by (Signature and Organization)		Sample Condition Upon Receipt
(M IEA	6/6/248 082	Sell Country	6/6/18	
ļ	73-61	1 70/1/10/0	77/2/	10:40	
		ļ			
j	 				
		1 1		}	
	<u></u>	<u> </u>			

Page 1 of 1

DateShipped: 6/6/2018

CarrierName: Delivered by EA

USEPA

CHAIN OF CUSTODY RECORD

Site #: TXN000605460 Contact Name: Pat Appel

Contact Phone: 972-315-3922

No: 6-052418-140511-0058

Lab#	Location	Tag	Analyses	Matrix	Collected	Sample Time	Numb Cont	Container	Preservative	Start Pressure	Stop Pressure	Sampler	Start_ Time	Stop_ Time
	ASI-105-06052018	H3444	TO-15 SIM	Air	6/5/2018	17:39	1	6 L Canister	Keal Case	-30	-4 Jason Stroup		9:03:0 0 AM	5:39:0 0 PM
		-		<u></u>	 				<u></u>					ļ
			 	- -							 I		<u> </u>	
				<u> </u>										
·		- 		-		<u> </u>								
		-+	+	 				<u> </u>	 				 	
			+			ļ			 	! -				
	ļ			 		ļ		<u> </u>	<u> </u>				 	ļ
				-							 			
		·	<u> </u>						<u>-</u>	[<u> </u>			

Special Instructions: Tag = Canister ID		SAMPLES 1	TRANSFERRED FROM
1 .		CHAIN OF	CUSTODY #
Stop_Time = Sample Time	•		

Items/Reason	Relinquished by (Signature and Organization)		Received by (Signature and Organization)	Date/Time	Sample Condition Upon Receipt
		6/6/2019	1111	6/6/18	
	X	08:30	gilf mun	10:40	
	<u> </u>				ļ
		}			
		 		<u></u>	

DateShipped: 6/6/2018

CarrierName: Delivered by EA

CHAIN OF CUSTODY RECORD

Site #: TXN000605460 Contact Name: Pat Appel Contact Phone: 972-315-3922 No: 6-052418-140512-0059

Lab#	Location	Tag	Analyses	Matrix	Collected	Sample Time	Numb Cont	Container	Preservative	Start Pressure	Stop Pressure	Sampler	Time	Time
	ASI-106-06052018	H3440	TO-15 SIM	Air	6/5/2018	17:40	1	6 L Canister	Keal Case	-30	-4	Jason Stroup	8.58:0 0 AM	5:40:0 0 PM
										<u> </u>				<u></u>
														<u> </u>
- · ·														
									 					
						 								<u> </u>
	ļ					<u> </u>						<u> </u>	ļ <u>-</u>	
				<u> </u>				<u> </u>	<u> </u>	 				
				ļ - <u>-</u>					:					1
					ļ.— -— -——									<u> </u>
				-	_		ļ		 	-			<u> </u>	

	SAMPLES TRANSFERRED FROM
Special Instructions: Tag = Canister ID	CHAIN OF CUSTODY #
Stop_Time = Sample Time	
	Dato/Time Sample Condition Upon Receip

Items/Reason	Relinquished by (Signature and Organization)	Date/Time	Received by (Signature and Organization)	Date/Time	Sample Condition Upon Receipt
	J. J. A.	6/6/18	Soll Smert	6/6/18	1
	71		the second	10,10	
	<u></u>				
ļ	<u> </u>			<u> </u>	

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

Region 6 Laboratory

Environmental Services Branch 10625 Fallstone Road, Houston, TX 77099 Phone: (281)983-2100 Fax: (281)983-2248

Site Name	Jones Road Groundwater Plume
Sample Collection Date(s)	11/06/18
Contact	Raji Josiam (6SF-RA)
Report Date	12/18/18
Project #	19SF023
Work Order(s)	1811003

Analyses included in this report:

Air TO-15 (Vapor Intrusion)

Report Narrative

Standard procedures for quality assurance and quality control were followed in the analysis and reporting of the sample results. The results apply only to the samples tested. This final report should only be reproduced in full.

The reporting limit (sometimes referred to as a quantitation limit) is defined as the lowest concentration at which an analyte can be reliably measured and reported without qualification. Reporting limits are adjusted for sample size, dilution, and matrix interference. Concentrations below the reporting limit are reported as non-detects or <RL.

For a list of ISO 17025 accredited methods go to: http://region6a.epa.gov/intranet/6md/lab/labisocertification2018.pdf

Report Approvals:	
Richard McMillin Region 6 Laboratory Technical Manager	David W. McQuiddy Region 6 Laboratory Branch Chief

THITED STATES . LOWING WANTED TO THE PROPERTY OF THE PROPERTY

Please provide a reason for holding:

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

Region 6 Environmental Services Branch Laboratory

10625 Fallstone Road Houston, Texas 77099

Sample Receipt and Disposal

Site Name: Jones Road Groundwater Plume	Project Number: 19SF023
Data Management Coordinator: Christy Warren	/ /
Data Management Coordinator Signature	Date
Date Transmitted:/	
Please have the U.S. EPA Project Manager/Officer call the D comments or questions.	ata Management Coordinator at 3-2137 for any
Please sign and date this form below and return it with any c	omments to:
Christy Warren Data Management Coordinator Region 6 Laboratory 6MD-HS	
Received by and Date	
Comments:	
The laboratory routinely disposes of samples 90 days after al hold these samples in custody longer than 90 days, please significant samples in custody longer than 90 days, please significant samples in custody longer than 90 days.	
Signature	Date

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

ANALYTICAL REPORT FOR SAMPLES

Station ID	Laboratory ID	Sample Type	Date Collected	Date Received
ASBKG-1-11062018 (H00289)	1811003-01	air	11/6/18 17:25	11/08/18 09:45
ASBKG-2-11062018 (0283)	1811003-02	air	11/6/18 18:45	11/08/18 09:45
ASI-101-11062018 (0275)	1811003-03	air	11/6/18 18:25	11/08/18 09:45
ASI-101-DUP-11062018 (0169)	1811003-04	air	11/6/18 18:25	11/08/18 09:45
ASI-102-11062018 (0166)	1811003-05	air	11/6/18 18:27	11/08/18 09:45
ASI-103-11062018 (0182)	1811003-06	air	11/6/18 18:42	11/08/18 09:45
ASI-104-11062018 (H3444)	1811003-07	air	11/6/18 18:40	11/08/18 09:45
ASI-105-11062018 (H3428)	1811003-08	air	11/6/18 17:32	11/08/18 09:45
ASI-106-11062018 (H3427)	1811003-09	air	11/6/18 17:30	11/08/18 09:45

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Fax:(281)983-2248 Phone:(281)983-2100

QC SUMMARY REPORT

Air TO-15 (Vapor Intrusion) B8K2801 air						
Samples: 9	ReExts: 0					
LAB NUMBER	SOURCE					
B8K2801-BLK1						
B8K2801-BS1						
B8K2801-BS2						
B8K2801-BSD1						
B8K2801-BSD2						
B8K2801-DUP1	1811003-08					

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Lab ID: 1811003-01 Station ID: ASBKG-1-11062018 (H00289)

Batch: B8K2801 Date Collected: 11/06/18 Initial Pressure: 13.41 psia Sample Type: air Sample Qualifiers:

Surrogates

Analyte	Result ppbv	Analyte Qualifiers	%Recovery	%Recovery Limits	Prepared	Analyzed
1,2-Dichloroethane-d4	11.6		116	70-130	11/26/18	11/27/18
Toluene-d8	10.3		103	70-130	"	"
4-Bromofluorobenzene	9.79		97.9	70-130	"	"

Targets

	Result	Analyte	Reporting Limit			
Analyte (CAS Number)	ppbv $\mu g/m^3$	Qualifiers	ppbv $\mu g/m^3$	Dilution	Prepared	Analyzed

Targets

Analyta (CAS Number)	Reporting Result Analyte Limit ppbv μg/m³ Qualifiers ppbv μg/m³			Dilution	Prepared	Analyzed		
Analyte (CAS Number)	PPOV	μg/III	Qualificis	ppov	μg/III	Dilution	riepaieu	Allaryzeu
Vinyl chloride (75-01-4)	U	U		0.10	0.26	1.0	11/26/18	11/27/18
1,1-Dichloroethene (75-35-4)	U	U		0.10	0.40	"	"	"
trans-1,2-Dichloroethene (156-60-5)	U	U		0.10	0.40	"	"	"
cis-1,2-Dichloroethene (156-59-2)	U	U		0.10	0.40	"	"	"
Trichloroethene (79-01-6)	U	U		0.10	0.54	"	"	"
Tetrachloroethene (127-18-4)	0.17	1.16		0.10	0.68	"	"	"

Project #: 19SF023 Report Name:

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Lab ID: 1811003-02 Station ID: ASBKG-2-11062018 (0283)

Batch: B8K2801 Date Collected: 11/06/18 Initial Pressure: 12.76 psia Sample Type: air Sample Qualifiers:

Surrogates

Analyte	Result ppbv	Analyte Qualifiers	%Recovery	%Recovery Limits	Prepared	Analyzed				
1,2-Dichloroethane-d4	11.5		115	70-130	11/26/18	11/27/18				
Toluene-d8	10.4		104	70-130	"	**				
4-Bromofluorobenzene	9.86		98.6	70-130	"	"				
Targets										

Targets

		Result			Reporting Limit				
-	Analyte (CAS Number)	ppbv	μg/m³	Qualifiers	ppbv	$\mu g/m^3$	Dilution	Prepared	Analyzed

Targets

Analyte (CAS Number)	Re ppbv	esult µg/m³	Analyte Qualifiers		orting nit µg/m³	Dilution	Prepared	Analyzed
Vinyl chloride (75-01-4)	U	U		0.10	0.26	1.0	11/26/18	11/27/18
1,1-Dichloroethene (75-35-4)	U	U		0.10	0.40	"	"	"
trans-1,2-Dichloroethene (156-60-5)	U	U		0.10	0.40	"	"	"
cis-1,2-Dichloroethene (156-59-2)	U	U		0.10	0.40	"	"	"
Trichloroethene (79-01-6)	U	U		0.10	0.54	"	"	"
Tetrachloroethene (127-18-4)	0.11	0.75		0.10	0.68	"	"	"

Report Name: Project #: 19SF023

Page 4 of 20

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Station ID: ASI-101-11062018 (0275) Lab ID: 1811003-03

Batch: B8K2801 Date Collected: 11/06/18 Initial Pressure: 12.78 psia Sample Type: air Sample Qualifiers:

Surrogates

Analyte	Result ppbv	Analyte Qualifiers	%Recovery	%Recovery Limits	Prepared	Analyzed
1,2-Dichloroethane-d4	11.5		115	70-130	11/26/18	11/27/18
Toluene-d8	10.3		103	70-130	"	"
4-Bromofluorobenzene	10.2		102	70-130	"	"

Targets

	Result		Analyte	Analyte Reporting Limit				
Analyte (CAS Number)	ppbv	$\mu g/m^3$	Qualifiers	ppbv	$\mu g/m^3$	Dilution	Prepared	Analyzed

Targets

Analyte (CAS Number)	Re ppbv	sult μg/m³	Analyte Qualifiers	_	orting nit µg/m³	Dilution	Prepared	Analyzed
Vinyl chloride (75-01-4)	0.65	1.66		0.10	0.26	1.0	11/26/18	11/27/18
1,1-Dichloroethene (75-35-4)	U	U		0.10	0.40	"	"	"
trans-1,2-Dichloroethene (156-60-5)	U	U		0.10	0.40	"	"	"
cis-1,2-Dichloroethene (156-59-2)	1.54	6.12		0.10	0.40	"	"	"
Trichloroethene (79-01-6)	0.78	4.20		0.10	0.54	"	"	"
Tetrachloroethene (127-18-4)	7.72	52.5		0.10	0.68	"	"	"

Report Name: Project #: 19SF023 Page 5 of 20

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Lab ID: 1811003-04 Station ID: ASI-101-DUP-11062018 (0169)

Batch: B8K2801 Date Collected: 11/06/18 Initial Pressure: 12.89 psia Sample Type: air Sample Qualifiers:

Surrogates

Analyte	Result ppbv	Analyte Qualifiers	%Recovery	%Recovery Limits	Prepared	Analyzed
1,2-Dichloroethane-d4	11.3		113	70-130	11/26/18	11/27/18
Toluene-d8	10.3		103	70-130	"	"
4-Bromofluorobenzene	9.89		98.9	70-130	"	"
		Torgots				

Targets

	Res	ult	Analyte	Reporti	ng Limit			
Analyte (CAS Number)	ppbv	$\mu g/m^3$	Qualifiers	ppbv	$\mu g/m^3$	Dilution	Prepared	Analyzed

Targets

Analyte (CAS Number)	Re ppbv	sult μg/m³	Analyte Qualifiers	-	orting nit µg/m³	Dilution	Prepared	Analyzed
Vinyl chloride (75-01-4)	0.64	1.64		0.10	0.26	1.0	11/26/18	11/27/18
1,1-Dichloroethene (75-35-4)	U	U		0.10	0.40	"	"	"
trans-1,2-Dichloroethene (156-60-5)	U	U		0.10	0.40	"	"	"
cis-1,2-Dichloroethene (156-59-2)	1.49	5.92		0.10	0.40	"	"	"
Trichloroethene (79-01-6)	0.74	3.98		0.10	0.54	"	"	"
Tetrachloroethene (127-18-4)	7.51	51		0.10	0.68	"	"	"

Report Name: Project #: 19SF023 Page 6 of 20

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Station ID: ASI-102-11062018 (0166) Lab ID: 1811003-05

Batch: B8K2801 Date Collected: 11/06/18 Initial Pressure: 12.60 psia Sample Type: air Sample Qualifiers:

Surrogates

Analyte	Result ppbv	Analyte Qualifiers	%Recovery	%Recovery Limits	Prepared	Analyzed
1,2-Dichloroethane-d4	11.1		111	70-130	11/26/18	11/27/18
Toluene-d8	10.3		103	70-130	"	"
4-Bromofluorobenzene	9.92		99.2	70-130	"	"

Targets

		Res		Analyte					
-	Analyte (CAS Number)	ppbv	μg/m³	Qualifiers	ppbv	$\mu g/m^3$	Dilution	Prepared	Analyzed

Targets

Analyte (CAS Number)	Re ppbv	sult μg/m³	Analyte Qualifiers	-	orting nit µg/m³	Dilution	Prepared	Analyzed
Vinyl chloride (75-01-4)	0.71	1.82		0.10	0.26	1.0	11/26/18	11/27/18
1,1-Dichloroethene (75-35-4)	U	U		0.10	0.40	"	"	"
trans-1,2-Dichloroethene (156-60-5)	U	U		0.10	0.40	"	"	"
cis-1,2-Dichloroethene (156-59-2)	1.74	6.91		0.10	0.40	"	"	"
Trichloroethene (79-01-6)	0.85	4.58		0.10	0.54	"	"	"
Tetrachloroethene (127-18-4)	8.30	56.4		0.10	0.68	"	"	"

Report Name: Project #: 19SF023

Page 7 of 20

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Lab ID: 1811003-06 **Station ID: ASI-103-11062018 (0182)**

Batch: B8K2801 Date Collected: 11/06/18 Initial Pressure: 13.05 psia Sample Type: Sample Qualifiers:

Surrogates

Analyte	Result ppbv	Analyte Qualifiers	%Recovery	%Recovery Limits	Prepared	Analyzed
1,2-Dichloroethane-d4	11.0		110	70-130	11/26/18	11/27/18
Toluene-d8	10.2		102	70-130	"	**
4-Bromofluorobenzene	10.0		100	70-130	"	"
		Targets				

Reporting Limit Analyte Result Qualifiers Analyte (CAS Number) ppbv $\mu g/m^3$ ppbv $\mu g/m^3$ Prepared Analyzed Dilution

Targets

Analyte (CAS Number)	Re ppbv	esult μg/m³	Analyte Qualifiers		orting mit µg/m³	Dilution	Prepared	Analyzed
Vinyl chloride (75-01-4)	U	U		0.10	0.26	1.0	11/26/18	11/27/18
1,1-Dichloroethene (75-35-4)	U	U		0.10	0.40	"	"	"
trans-1,2-Dichloroethene (156-60-5)	U	U		0.10	0.40	"	"	"
cis-1,2-Dichloroethene (156-59-2)	U	U		0.10	0.40	"	"	"
Trichloroethene (79-01-6)	0.10	0.54		0.10	0.54	"	"	"
Tetrachloroethene (127-18-4)	0.74	5.03		0.10	0.68	"	"	"

Report Name: Project #: 19SF023 Page 8 of 20

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Station ID: ASI-104-11062018 (H3444) Lab ID: 1811003-07

Batch: B8K2801 Date Collected: 11/06/18 Initial Pressure: 13.15 psia Sample Type: air Sample Qualifiers:

Surrogates

Analyte	Result ppbv	Analyte Qualifiers	%Recovery	%Recovery Limits	Prepared	Analyzed
1,2-Dichloroethane-d4	10.7		107	70-130	11/26/18	11/27/18
Toluene-d8	10.1		102	70-130	"	"
4-Bromofluorobenzene	9.95		99.7	70-130	"	"

Targets

	Result	Analyte	Reporting Limit			
Analyte (CAS Number)	ppbv μg/m³	Qualifiers	ppbv $\mu g/m^3$	Dilution	Prepared	Analyzed

Targets

Analyte (CAS Number)	Re ppbv	esult µg/m³	Analyte Qualifiers		orting nit µg/m³	Dilution	Prepared	Analyzed
Vinyl chloride (75-01-4)	U	U		0.10	0.26	1.0	11/26/18	11/27/18
1,1-Dichloroethene (75-35-4)	U	U		0.10	0.40	"	"	"
trans-1,2-Dichloroethene (156-60-5)	U	U		0.10	0.40	"	"	"
cis-1,2-Dichloroethene (156-59-2)	U	U		0.10	0.40	"	"	"
Trichloroethene (79-01-6)	U	U		0.10	0.54	"	"	"
Tetrachloroethene (127-18-4)	0.69	4.69		0.10	0.68	"	"	"

Report Name: Project #: 19SF023 Page 9 of 20

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Lab ID: 1811003-08 Station ID: ASI-105-11062018 (H3428)

Batch: B8K2801 Date Collected: 11/06/18 Initial Pressure: 12.65 psia Sample Type: air Sample Qualifiers:

Surrogates

Analyte	Result ppbv	Analyte Qualifiers	%Recovery	%Recovery Limits	Prepared	Analyzed
1,2-Dichloroethane-d4	10.4		104	70-130	11/26/18	11/27/18
Toluene-d8	10.2		102	70-130	"	"
4-Bromofluorobenzene	9.65		96.5	70-130	"	"
		T4-				

Targets

	Res	ult	Analyte	Reporti	ng Limit			
Analyte (CAS Number)	ppbv	$\mu g/m^3$	Qualifiers	ppbv	$\mu g/m^3$	Dilution	Prepared	Analyzed

Targets

Analyte (CAS Number)	Re ppbv	esult µg/m³	Analyte Qualifiers		orting nit µg/m³	Dilution	Prepared	Analyzed
Vinyl chloride (75-01-4)	U	U		0.10	0.26	1.0	11/26/18	11/27/18
1,1-Dichloroethene (75-35-4)	U	U		0.10	0.40	"	"	"
trans-1,2-Dichloroethene (156-60-5)	U	U		0.10	0.40	"	"	"
cis-1,2-Dichloroethene (156-59-2)	U	U		0.10	0.40	"	"	"
Trichloroethene (79-01-6)	U	U		0.10	0.54	"	"	"
Tetrachloroethene (127-18-4)	0.48	3.26		0.10	0.68	"	"	"

Report Name: Project #: 19SF023

Page 10 of 20

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS

Lab ID: 1811003-09 Station ID: ASI-106-11062018 (H3427)

Batch: B8K2801 Date Collected: 11/06/18 Initial Pressure: 13.72 psia Sample Type: air Sample Qualifiers:

Surrogates

Analyte	Result ppbv	Analyte Qualifiers	%Recovery	%Recovery Limits	Prepared	Analyzed
1,2-Dichloroethane-d4	10.4		104	70-130	11/26/18	11/27/18
Toluene-d8	10.1		101	70-130	"	"
4-Bromofluorobenzene	9.71		97.1	70-130	"	"

Targets

	Res	ult	Analyte	Reporti	ng Limit			
Analyte (CAS Number)	ppbv	$\mu g/m^3$	Qualifiers	ppbv	$\mu g/m^3$	Dilution	Prepared	Analyzed

Targets

Analyte (CAS Number)	Re ppbv	esult µg/m³	Analyte Qualifiers		orting nit μg/m³	Dilution	Prepared	Analyzed
Vinyl chloride (75-01-4)	U	U		0.10	0.26	1.0	11/26/18	11/27/18
1,1-Dichloroethene (75-35-4)	U	U		0.10	0.40	"	"	"
trans-1,2-Dichloroethene (156-60-5)	U	U		0.10	0.40	"	"	"
cis-1,2-Dichloroethene (156-59-2)	U	U		0.10	0.40	"	"	"
Trichloroethene (79-01-6)	U	U		0.10	0.54	"	"	"
Tetrachloroethene (127-18-4)	0.50	3.40		0.10	0.68	"	"	"

Report Name: Project #: 19SF023 Page 11 of 20

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS - Quality Control

Batch: B8K2801 Sample Type: air

Blank (B8K2801-BLK1)

Prepared: 11/20/2018 Analyzed: 11/26/2018

Surrogates

ANALYTE	Result ppbv	Analyte Qualifier	Spike Level	%REC	%REC Limits
1,2-Dichloroethane-d4	10.3		10.0	103	70-130
Toluene-d8	10.1		10.0	101	70-130
4-Bromofluorobenzene	9.52		10.0	95.2	70-130

Targets

		8	
ANALYTE	Result ppbv	Analyte Reporting Qualifiers Limit	
Vinyl chloride	U	0.10	
1,1-Dichloroethene	U	0.10	
trans-1,2-Dichloroethene	U	0.10	
cis-1,2-Dichloroethene	U	0.10	
Trichloroethene	U	0.10	
Tetrachloroethene	U	0.10	

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS - Quality Control

Batch: B8K2801 Sample Type: air

LCS (B8K2801-BS1)

Prepared: 11/20/2018 Analyzed: 11/20/2018

Surrogates

ANALYTE	Result ppbv	Analyte Qualifier	Spike Level	%REC	%REC Limits
1,2-Dichloroethane-d4	10.2		9.98	102	70-130
Toluene-d8	10.1		9.98	102	70-130
4-Bromofluorobenzene	10.1		9.98	101	70-130

Targets

ANALYTE	Result ppbv	Analyte Qualifiers	Reporting Limit	Spike Level	%REC	%REC Limits
Vinyl chloride	11.0		0.10	10.2	107	70-130
1,1-Dichloroethene	9.90		0.10	10.1	98.0	70-130
trans-1,2-Dichloroethene	11.0		0.10	11.0	99.8	70-130
cis-1,2-Dichloroethene	10.5		0.10	10.0	105	70-130
Trichloroethene	10.4		0.10	10.7	96.7	70-130
Tetrachloroethene	10.3		0.10	10.2	101	70-130

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS - Quality Control

Batch: B8K2801 Sample Type: air

LCS (B8K2801-BS2)

Prepared: 11/20/2018 Analyzed: 11/26/2018

Surrogates

ANALYTE	Result ppbv	Analyte Qualifier	Spike Level	%REC	%REC Limits
1,2-Dichloroethane-d4	10.2		9.98	103	70-130
Toluene-d8	10.2		9.98	102	70-130
4-Bromofluorobenzene	10.0		9.98	100	70-130

Targets

ANALYTE	Result ppbv	Analyte Qualifiers	Reporting Limit	Spike Level	%REC %REC Limits
Vinyl chloride	11.3		0.10	10.2	111 70-130
1,1-Dichloroethene	10.3		0.10	10.1	102 70-130
trans-1,2-Dichloroethene	11.4		0.10	11.0	103 70-130
cis-1,2-Dichloroethene	10.9		0.10	10.0	109 70-130
Trichloroethene	10.5		0.10	10.7	97.8 70-130
Tetrachloroethene	10.4		0.10	10.2	102 70-130

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS - Quality Control

Batch: B8K2801 Sample Type: air

LCS Dup (B8K2801-BSD1)

Prepared: 11/20/2018 Analyzed: 11/20/2018

Surrogates

ANALYTE	Result ppbv	Analyte Qualifier	Spike Level	%REC	%REC Limits
1,2-Dichloroethane-d4	10.6		10.0	106	70-130
Toluene-d8	10.2		10.0	102	70-130
4-Bromofluorobenzene	10.1		10.0	101	70-130

Targets

ANALYTE	Result ppbv	Analyte Qualifiers	Reporting Limit	Spike Level	%REC	%REC Limits	RPD	RPD Limit
Vinyl chloride	10.9		0.10	10.2	107	70-130	0.37	25
1,1-Dichloroethene	9.96		0.10	10.1	98.6	70-130	0.60	25
trans-1,2-Dichloroethene	11.1		0.10	11.0	101	70-130	0.91	25
cis-1,2-Dichloroethene	10.6		0.10	10.0	106	70-130	1.13	25
Trichloroethene	10.5		0.10	10.7	98.2	70-130	1.53	25
Tetrachloroethene	10.4		0.10	10.2	102	70-130	1.74	25

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS - Quality Control

Batch: B8K2801 Sample Type: air

LCS Dup (B8K2801-BSD2)

Prepared: 11/20/2018 Analyzed: 11/26/2018

Surrogates

ANALYTE	Result ppbv	Analyte Qualifier	Spike Level	%REC	%REC Limits
1,2-Dichloroethane-d4	10.4		9.98	105	70-130
Toluene-d8	10.2		9.98	103	70-130
4-Bromofluorobenzene	10.0		9.98	101	70-130

Targets

ANALYTE	Result ppbv	Analyte Qualifiers	Reporting Limit	Spike Level	%REC	%REC Limits	RPD	RPD Limit
Vinyl chloride	11.0		0.10	10.2	108	70-130	2.13	25
1,1-Dichloroethene	10.0		0.10	10.1	99.4	70-130	2.17	25
trans-1,2-Dichloroethene	11.1		0.10	11.0	101	70-130	1.94	25
cis-1,2-Dichloroethene	10.3		0.10	9.98	104	70-130	5.35	25
Trichloroethene	10.5		0.10	10.7	98.5	70-130	0.77	25
Tetrachloroethene	10.5		0.10	10.2	103	70-130	0.96	25

Project #: 19SF023

Report Name:

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Toxic Organic Compounds in Ambient Air-TO15 - GC/MS - Quality Control

Batch: B8K2801 Sample Type: air

Duplicate (B8K2801-DUP1)

Prepared: 11/20/2018 Analyzed: 11/27/2018 Source: 1811003-08

Surrogates

ANALYTE	Result ppbv	Analyte Qualifier	Spike Level	%REC	%REC Limits
1,2-Dichloroethane-d4	10.5		10.0	105	70-130
Toluene-d8	10.1		10.0	101	70-130
4-Bromofluorobenzene	9.63		10.0	96.3	70-130

Targets

ANALYTE	Result ppbv	Analyte Reporting Spi Qualifiers Limit Lev			RPD Limit
Vinyl chloride	U	0.10			35
1,1-Dichloroethene	U	0.10			35
trans-1,2-Dichloroethene	U	0.10			35
cis-1,2-Dichloroethene	U	0.10			35
Trichloroethene	U	0.10			35
Tetrachloroethene	0.49	0.10	0.48	2.06	35

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

SURROGATE SUMMARY REPORT

Air TO-15 (Vapor Intrusion)

air

LAB NUMBER	1,2-DCE-d4	TOL-d8	4-BFB
1811003-01	116	103	97.9
1811003-02	115	104	98.6
1811003-03	115	103	102
1811003-04	113	103	98.9
1811003-05	111	103	99.2
1811003-06	110	102	100
1811003-07	107	102	99.7
1811003-08	104	102	96.5
1811003-09	104	101	97.1
B8K2801-BLK1	103	101	95.2
B8K2801-BS1	102	102	101
B8K2801-BS2	103	102	100
B8K2801-BSD1	106	102	101
B8K2801-BSD2	105	103	101
B8K2801-DUP1	105	101	96.3

QC LIMITS

1,2-DCE-d4	=	1,2-Dichloroethane-d4	70 - 130
TOL-d8	=	Toluene-d8	70 - 130
4-BFB	=	4-Bromofluorobenzene	70 - 130

Report Name: Project #: 19SF023 Page 18 of 20

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

Qualifiers

A This sample was extracted at a single acid pH.

HTS Sample was prepared and/or analyzed past recommended holding time. Concentrations should be

considered minimum values.

U The analyte was not detected at or above the reporting limit.

Abbreviations and Symbols

ABN Acid Base Neutrals (Semivolatile Compounds)

AES Atomic Emission Spectrometer

BS Blank Spike

CVAA Cold Vapor Atomic Absorption

DCB Decachlorobiphenyl

Electron Capture Detector ECD

GCGas Chromatograph

ICP Inductively Coupled Plasma

ISTD Internal Standard

LCS Laboratory Control Sample

MS Mass Spectrometer

MS/MSD Matrix Spike/Matrix Spike Duplicate

NA Not Applicable

NPD Nitrogen Phosphorous Detector

Not Reported NR

PCB Polychlorinatedbiphenyl

RL Reporting Limit

RT Retention Time

RPD Relative Percent Difference

Region 6 Laboratory

10625 Fallstone Road, Houston, TX 77099 Phone:(281)983-2100 Fax:(281)983-2248

TCLP Toxicity Characteristic Leaching Procedure

TCMX Tetrachloro-meta-xylene

VOA Volatile Organic Analysis

Out of QC limits

>LR The result was greater than the linear range.

Initial pressure in air analyses is the pressure at which the canister was received in psia (pounds *per* square inch absolute pressure).

The pH reported for Volatile liquid samples was tested using a 0-14 pH indicator strip for the purpose of verifying chemical preservation.

The statistical software used for the reporting of toxicity data is ToxCalc 5.0.32, Environmental Toxicity Data Analysis System 1994-2007 Tidepool Scientific Software.

Project #: 19SF023 Report Name:

USEPA

DateShipped: 11/8/2018 CarrierName: Delivered by EA

CHAIN OF CUSTODY RECORD

Site #: TXN000605460 Contact Name: Pat Appel Contact Phone: 972-315-3922

Lab: EPA Region 6 Laboratory Lab Phone: (281) 983-2137

No: 6-110718-081932-0060

Lab#	Location	Tag	Analyses	Matrix	Collected	Sample Time	Numb Cont	Container	Preservative	Start Pressure	Stop Pressure	Sampler	Start_ Time	Stop_ Time
	ASBKG-1-11062018	H00289	TO-15 SIM	Air	11/6/2018	17:25	1	6 L Canister	Keal Case	-30	-4.5	Jason Stroup	9:17:0 0 AM	5:25:0 0 PM
														<u> </u>
·														
.,,,,														

	SAMPLES TRANSFERRED FROM
Special Instructions: Tag = Canister ID	CHAIN OF CUSTODY #

Items/Reason	Relinquished by (Signature and Organization)	Date/Time	Received by (Signature and Organization)	Date/Time	Sample Condition Upon Receipt
	W EA	11/7/13 160			
			Sell Sunty	11/8/18	1/2/11/18
			-///	9:45	

USEPA

DateShipped: 11/8/2018 CarrierName: Delivered by EA

Special Instructions: Tag = Canister ID

CHAIN OF CUSTODY RECORD

Site #: TXN000605460 Contact Name: Pat Appel Contact Phone: 972-315-3922 No: 6-110718-082944-0061

SAMPLES TRANSFERRED FROM

CHAIN OF CUSTODY #

Lab#	Location	Tag	Analyses	Matrix	Collected	Sample Time	Numb Cont	Container	Preservative	Start Pressure	Stop Pressure	Sampler	Start_ Time	Stop_ Time
	ASBKG-2-11062018	0283	TO-15 SIM	Air	11/6/2018	18:45	1	6 L Canister	Keal Case	-30	-4	Jason Stroup	10:45: 00 AM	6:45:0 0 PM

										·				
W														-

Items/Reason	Relinquished by (Signature and Organization)	Date/Time	Received by (Signature and Organization)	Date/Time	Sample Condition Upon Receipt
	EA	11/1/18 16W			
				/-/-	
			Self Smit	9:45	

USEPA

DateShipped: 11/8/2018 CarrierName: Delivered by EA

CHAIN OF CUSTODY RECORD

Site #: TXN000605460 Contact Name: Pat Appel

Contact Phone: 972-315-3922

No: 6-110718-083433-0062

Lab#	Location	Tag	Analyses	Matrix	Collected	Sample Time	Numb Cont	Container	Preservative	Start Pressure	Stop Pressure	Sampler	Start_ Time	Stop_ Time
	ASI-101-11062018	0275	TO-15 SIM	Air	11/6/2018	18:25	1	6 L Canister	Keal Case	-30	-3	Jason Stroup	10:20: 00 AM	6:25:0 0 PM
						<u> </u>					***************************************		·····	***************************************
·														

	SAMPLES TRANSFERRED FROM
Special Instructions: Tag = Canister ID	CHAIN OF CUSTODY#

Items/Reason	Relinquished by (Signature and Organization)	Date/Time	Received by (Signature and Organization)	Date/Time	Sample Condition Upon Receipt
·	EA	1600			
	· · · · · · · · · · · · · · · · · · ·		Sell Somt	11/8/18	
			7/10		

USEPA

DateShipped: 11/8/2018 CarrierName: Delivered by EA

CHAIN OF CUSTODY RECORD

Site #: TXN000605460

Contact Name: Pat Appel Contact Phone: 972-315-3922 No: 6-110718-083512-0063

Lab #	Location	Tag	Analyses	Matrix	Collected	Sample Time	Numb Cont	Container	Preservative	Start Pressure	Stop Pressure	Sampler	Start_ Time	Stop_ Time
	ASI-101-DUP- 11062018	0169	TO-15 SIM	Аіг	11/6/2018	18:25	1	6 L Canister	Keal Case	-30	-3	Jason Stroup	10:20: 00 AM	6:25:0 0 PM

												** . **********************************		

	-	SAMPLES TRANSFERRED FROM
Special Instructions: Tag = Canister ID		CHAIN OF CUSTODY #
		·

Items/Reason	Relinquished by (Signature and Organization)	Date/Time	Received by (Signature and Organization)	Date/Time	Sample Condition Upon Receipt
	A EA	14/1/18			
		/ 54 55			:
			10/10-6	11/8/18	•
·			Cfeff Smul	9,70	·
			·		

USEPA

DateShipped: 11/8/2018 CarrierName: Delivered by EA

CHAIN OF CUSTODY RECORD

Site #: TXN000605460 Contact Name: Pat Appel Contact Phone: 972-315-3922 No: 6-110718-085957-0064

Lab#	Location	Tag	Analyses	Matrix	Collected	Sample Time	Numb Cont	Container	Preservative	Start Pressure	Stop Pressure	Sampler	Start_ Time	Stop_ Time
	ASI-102-11062018	0166	TO-15 SIM	Air	11/6/2018	18:27	1	6 L Canister	Keal Case	-30	-4	Jason Strou p	10:22: 00 AM	6:27:0 0 PM
						,								
												······································		
											•			
					-									
				ļ										<u> </u>
					:			-						

	SAMPLES TRANSFERRED FROM
Special Instructions: Tag = Canister ID	CHAIN OF CUSTODY #

Items/Reason	Relinquished by (Signature and Organization)	Date/Time	Received by (Signature and Organization)	Date/Time	Sample Condition Upon Receipt
	JA EA	11/7/18			
				, ,	·
			gef Smit	11/8/18	
			1.11		

USEPA

DateShipped: 11/8/2018 CarrierName: Delivered by EA

CHAIN OF CUSTODY RECORD

Site #: TXN000605460 Contact Name: Pat Appel Contact Phone: 972-315-3922 No: 6-110718-090358-0065

Location	Tag	Analyses	Matrix	Collected	Sample Time			Preservative	Start Pressure	Stop Pressure	Sampler	Time	Stop_ Time
ASI-103-11062018	0182	TO-15 SIM	Air	11/6/2018	18:42	1	6 L Canister	Keal Case	-30	-4	Jason Stroup	10:40: 00 AM	6:42:0 0 PM
													-
													+
							-						
		ASI-103-11062018 0182	ASI-103-11062018 0182 TO-15 SIM	ASI-103-11062018 0182 TO-15 SIM Air	ASI-103-11062018 0182 TO-15 SIM Air 11/6/2018	ASI-103-11062018 0182 TO-15 SIM Air 11/6/2018 18:42	ASI-103-11062018 0182 TO-15 SIM Air 11/6/2018 18:42 1	ASI-103-11062018 0182 TO-15 SIM Air 11/6/2018 18:42 1 6 L Canister	ASI-103-11062018 0182 TO-15 SIM Air 11/6/2018 18:42 1 6 L Canister Keal Case	ASI-103-11062018 0182 TO-15 SIM Air 11/6/2018 18:42 1 6 L Canister Keal Case -30	ASI-103-11062018 0182 TO-15 SIM Air 11/6/2018 18:42 1 6 L Canister Keal Case -30 -4	ASI-103-11062018 0182 TO-15 SIM Air 11/6/2018 18:42 1 6 L Canister Keal Case -30 -4 Jason Stroup	ASI-103-11062018 0182 TO-15 SIM Air 11/6/2018 18:42 1 6 L Canister Keal Case -30 -4 Jason Stroup 00 AM

	SAMPLES TRANSFERRED FROM
Special Instructions: Tag = Canister ID	CHAIN OF CUSTODY #

Items/Reason	Relinquished by (Signature and Organization)	Date/Time	Received by (Signature and Organization)	Date/Time	Sample Condition Upon Receipt
	W EA	147/18			
		-			
			Jeff Smit	11/8/18	
			- V -		

USEPA

DateShipped: 11/8/2018 CarrierName: Delivered by EA

CHAIN OF CUSTODY RECORD

Site #: TXN000605460 Contact Name: Pat Appel Contact Phone: 972-315-3922 No: 6-110718-090657-0066

Lab#	Location	Tag	Analyses	Matrix	Collected	Sample Time	Numb Cont	Container	Preservative	Start Pressure	Stop Pressure	Sampler	Start_ Time	Stop_ Time
	ASI-104-11062018	H3444	TO-15 SIM	Аіг	11/6/2018	18:40	1	6 L Canister	Keal Case	-30	-6	Jason Stroup	10:38: 00 AM	6:40:0 0 PM
				1										
						 								
										:				
														+
														+
			***************************************					***************************************						
	<u>.</u>		-											
														ļ
						-								

	SAMPLES TRANSFERRED FROM
Special Instructions: Tag = Canister ID	CHAIN OF CUSTODY #

Items/Reason	Relinquished by (Signature and Organization)	Date/Time	Received by (Signature and Organization)	Date/Time	Sample Condition Upon Receipt
	D EA	17/18			
		_/6W			
	<u></u>	·	-		
,					
			Soll Sant	11/8/18	
	,		- Jeff-	1 1 1 -	

USEPA

DateShipped: 11/8/2018 CarrierName: Delivered by EA

Special Instructions: Tag = Canister ID

CHAIN OF CUSTODY RECORD

Site #: TXN000605460 Contact Name: Pat Appel Contact Phone: 972-315-3922 No: 6-110718-091018-0067

SAMPLES TRANSFERRED FROM

CHAIN OF CUSTODY #

Lab#	Location	Tag	Analyses	Matrix	Collected	Sample Time	Numb Cont	Container	Preservative	Start Pressure	Stop Pressure	Sampler	Start_ Time	Stop_ Time
	ASI-105-11062018	H3428	TO-15 SIM	Air	11/6/2018	17:32	1	6 L Canister	Keal Case	-30	-4.5	Jason Stroup	9:25:0 0 AM	5:32:0 0 PM
	· · · · · · · · · · · · · · · · · · ·												******	
						.,,,								
				***************************************	·····							· · · · · · · · · · · · · · · · · · ·		

Items/Reason	Relinquished by (Signature and Organization)	Date/Time	Received by (Signature and Organization)	Date/Time	Sample Condition Upon Receipt
	JA EA	1600			
			·		
				, ,	
			Self Smit	11/8/18	

USEPA

DateShipped: 11/8/2018 CarrierName: Delivered by EA

CHAIN OF CUSTODY RECORD

Site #: TXN000605460 Contact Name: Pat Appel Contact Phone: 972-315-3922 No: 6-110718-091426-0068

Lab#	Location	Tag	Analyses	Matrix	Collected	Sample Time	Numb Cont	Container	Preservative	Start Pressure	Stop Pressure	Sampler	Start_ Time	Stop_ Time
	ASI-106-11062018	H3427	TO-15 SIM	Air	11/6/2018	17:30	1	6 L Canister	Keal Case	-30		Jason Stroup	9:27:0 0 AM	5:30:0 0 PM
	·													

							-							

	SAMPLES TRANSFERRED FROM
Special Instructions: Tag = Canister ID	CHAIN OF CUSTODY #

Items/Reason	Relinquished by (Signature and Organization)	Date/Time	Received by (Signature and Organization)	Date/Time	Sample Condition Upon Receipt
	DEA :	1/7/18			

			Geff Sinth	11/8/18	

